Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Fairchild is active.

Publication


Featured researches published by Paul J. Fairchild.


Immunity | 1995

Low avidity recognition of self-antigen by T cells permits escape from central tolerance.

George Y. Liu; Paul J. Fairchild; Richard M. Smith; John R. Prowle; Dimitris Kioussis; David C. Wraith

The immunodominant epitope of myelin basic protein, Ac1-9, is encephalitogenic in H-2u mice. We have previously demonstrated that this epitope displays low affinity for I-Au and have suggested that the avidity of T cell recognition in the thymus may be compromised, enabling autoreactive T cells to escape self-tolerance. We have addressed this hypothesis directly by constructing transgenic mice expressing an encephalitogenic T cell receptor (TCR). Parenteral administration of Ac1-9 had no discernable impact on developing thymocytes. In contrast, peptide analogs displaying far higher affinity for I-Au, provoked deletion of CD4+ CD8+ cells and transient down-regulation of the TCR by mature CD4+ CD8- thymocytes. The use of analogs of intermediate affinity permitted a margin of error to be defined for the induction of tolerance and confirmed that the affinity of Ac1-9 lies well below the critical threshold.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Infectious tolerance via the consumption of essential amino acids and mTOR signaling

Stephen P. Cobbold; Elizabeth Adams; Claire A. Farquhar; Kathleen F. Nolan; Duncan Howie; Kathy O. Lui; Paul J. Fairchild; Andrew L. Mellor; David Ron; Herman Waldmann

Infectious tolerance describes the process of CD4+ regulatory T cells (Tregs) converting naïve T cells to become additional Tregs. We show that antigen-specific Tregs induce, within skin grafts and dendritic cells, the expression of enzymes that consume at least 5 different essential amino acids (EAAs). T cells fail to proliferate in response to antigen when any 1, or more, of these EAAs are limiting, which is associated with a reduced mammalian target of rapamycin (mTOR) signaling. Inhibition of the mTOR pathway by limiting EAAs, or by specific inhibitors, induces the Treg-specific transcription factor forkhead box P3, which depends on both T cell receptor activation and synergy with TGF-β.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Embryonic stem cell-derived tissues are immunogenic but their inherent immune privilege promotes the induction of tolerance

Nathan J. Robertson; Frances A. Brook; Richard L. Gardner; Stephen P. Cobbold; Herman Waldmann; Paul J. Fairchild

Although human embryonic stem (ES) cells may one day provide a renewable source of tissues for cell replacement therapy (CRT), histoincompatibility remains a significant barrier to their clinical application. Current estimates suggest that surprisingly few cell lines may be required to facilitate rudimentary tissue matching. Nevertheless, the degree of disparity between donor and recipient that may prove acceptable, and the extent of matching that is therefore required, remain unknown. To address this issue using a mouse model of CRT, we have derived a panel of ES cell lines that differ from CBA/Ca recipients at defined genetic loci. Here, we show that even expression of minor histocompatibility (mH) antigens is sufficient to provoke acute rejection of tissues differentiated from ES cells. Nevertheless, despite their immunogenicity in vivo, transplantation tolerance may be readily established by using minimal host conditioning with nondepleting monoclonal antibodies specific for the T cell coreceptors, CD4 and CD8. This propensity for tolerance could be attributed to the paucity of professional antigen-presenting cells and the expression of transforming growth factor (TGF)-β2. Together, these factors contribute to a state of acquired immune privilege that favors the polarization of infiltrating T cells toward a regulatory phenotype. Although the natural privileged status of ES cell-derived tissues is, therefore, insufficient to overcome even mH barriers, our findings suggest it may be harnessed effectively for the induction of dominant tolerance with minimal therapeutic intervention.


Current Biology | 2000

Directed differentiation of dendritic cells from mouse embryonic stem cells

Paul J. Fairchild; Frances A. Brook; Richard L. Gardner; Luis Graca; V Strong; Yukiko Tone; Masahide Tone; Kathleen F. Nolan; Herman Waldmann

Dendritic cells (DCs) are uniquely capable of presenting antigen to naive T cells, either eliciting immunity [1] or ensuring self-tolerance [2]. This property identifies DCs as potential candidates for enhancing responses to foreign [3] and tumour antigens [4], and as targets for immune intervention in the treatment of autoimmunity and allograft rejection [1]. Realisation of their therapeutic potential would be greatly facilitated by a fuller understanding of the function of DC-specific genes, a goal that has frequently proven elusive because of the paucity of stable lines of DCs that retain their unique properties, and the inherent resistance of primary DCs to genetic modification. Protocols for the genetic manipulation of embryonic stem (ES) cells are, by contrast, well established [5], as is their capacity to differentiate into a wide variety of cell types in vitro, including many of hematopoietic origin [6]. Here, we report the establishment, from mouse ES cells, of long-term cultures of immature DCs that share many characteristics with macrophages, but acquire, upon maturation, the allostimulatory capacity and surface phenotype of classical DCs, including expression of CD11c, major histocompatibility complex (MHC) class II and co-stimulatory molecules. This novel source should prove valuable for the generation of primary, untransformed DCs in which candidate genes have been overexpressed or functionally ablated, while providing insights into the earliest stages of DC ontogeny.


Immunological Reviews | 2006

Infectious tolerance and the long- term acceptance of transplanted tissue

Herman Waldmann; Elizabeth Adams; Paul J. Fairchild; Stephen P. Cobbold

Summary:  Short courses of antibody treatment aimed at blocking the coreceptors CD4 and CD8 and/or costimulatory molecules such as CD40L are able to bring about long‐term acceptance and tolerance of allogeneic transplants. This tolerant state is operational, in that potential effector cells remain but are tightly regulated through the induction of antigen‐specific CD4+ regulatory T cells (Tregs). CD4+CD25+FoxP3+ Tregs appear to play a prominent role, although other categories of Tregs have been documented. Transforming growth factor β (TGFβ) has been found to play a major role in the induction of the tolerant state with therapeutic antibodies as well as promoting the induction of FoxP3+ T cells from naïve populations. The observation that Tregs can be found in tolerated grafts has led to the idea that they may interact with the grafted tissue to establish a state of acquired privilege symmetrical with a similar privileged microenvironment around antigen‐presenting cells in lymphoid tissues. Dampening of aggressive immune responses by Tregs allows antigen to persist and be presented in an innocuous way to promote tolerance in new cohorts of T cells throughout the life of the tolerated graft. Regulation may operate at many stages of an immune response, even as a censor at the terminal differentiation stages of effector function.


Immunological Reviews | 2003

Regulatory T cells and dendritic cells in transplantation tolerance: molecular markers and mechanisms.

Stephen P. Cobbold; Kathleen F. Nolan; Luis Graca; Raquel Castejon; Alain Le Moine; Mark Frewin; Susan Humm; Elizabeth Adams; Sara A. J. Thompson; Diana Zelenika; Alison M. Paterson; Stephen F. Yates; Paul J. Fairchild; Herman Waldmann

Summary:  Transplantation tolerance can be induced in adult rodents using monoclonal antibodies against coreceptor or costimulation molecules on the surface of T cells. There are currently two well‐characterized populations of T cells, demonstrating regulatory capacity: the ‘natural’ CD4+CD25+ T cells and the interleukin (IL)‐10‐producing Tr1 cells. Although both types of regulatory T cells can induce transplantation tolerance under appropriate conditions, it is not clear whether either one plays any role in drug‐induced dominant tolerance, primarily due to a lack of clear‐cut molecular or functional markers. Similarly, although dendritic cells (DCs) can be pharmacologically manipulated to promote tolerance, the phenotype of such populations remains poorly defined. We have used serial analysis of gene expression (SAGE) with 29 different T‐cell and antigen‐presenting cell libraries to identify gene‐expression signatures associated with immune regulation. We found that independently derived, regulatory Tr1‐like clones were highly concordant in their patterns of gene expression but were quite distinct from CD4+CD25+ regulatory T cells from the spleen. DCs that were treated with the tolerance‐enhancing agents IL‐10 or vitamin D3 expressed a gene signature reflecting a functional specification in common with the most immature DCs derived from embryonic stem cells.


Immunological Reviews | 2006

Immune privilege induced by regulatory T cells in transplantation tolerance

Stephen P. Cobbold; Elizabeth Adams; Luis Graca; Stephen Daley; Stephen F. Yates; Alison M. Paterson; Nathan J. Robertson; Kathleen F. Nolan; Paul J. Fairchild; Herman Waldmann

Summary:  Immune privilege was originally believed to be associated with particular organs, such as the testes, brain, the anterior chamber of the eye, and the placenta, which need to be protected from any excessive inflammatory activity. It is now becoming clear, however, that immune privilege can be acquired locally in many different tissues in response to inflammation, but particularly due to the action of regulatory T cells (Tregs) induced by the deliberate therapeutic manipulation of the immune system toward tolerance. In this review, we consider the interplay between Tregs, dendritic cells, and the graft itself and the resulting local protective mechanisms that are coordinated to maintain the tolerant state. We discuss how both anti‐inflammatory cytokines and negative costimulatory interactions can elicit a number of interrelated mechanisms to regulate both T‐cell and antigen‐presenting cell activity, for example, by catabolism of the amino acids tryptophan and arginine and the induction of hemoxygenase and carbon monoxide. The induction of local immune privilege has implications for the design of therapeutic regimens and the monitoring of the tolerant status of patients being weaned off immunosuppression.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties

Joel Z. Nordin; Yi Lee; Pieter Vader; Imre Mäger; H. Johansson; Wolf Heusermann; Oscar P. B. Wiklander; Mattias Hällbrink; Yiqi Seow; Jarred J. Bultema; Jonathan Gilthorpe; Tim Davies; Paul J. Fairchild; Susanne Gabrielsson; Nicole Meisner-Kober; Janne Lehtiö; C. I. Edvard Smith; Matthew J.A. Wood; Samir El Andaloussi

UNLABELLED Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest; serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification: ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs, the biophysical properties of UF-LC-purified EVs are preserved, leading to a different in vivo biodistribution, with less accumulation in lungs. Finally, we show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future clinical applications involving EVs. FROM THE CLINICAL EDITOR Recent evidence suggests extracellular vesicles (EVs) as another route of cellular communication. These EVs may be utilized for future therapeutics. In this article, the authors compared ultrafiltration with size-exclusion liquid chromatography (UF-LC) and ultra-centrifugation (UC) for EV recovery.


Current Opinion in Immunology | 2000

Dendritic cells and prospects for transplantation tolerance.

Paul J. Fairchild; Herman Waldmann

The past year has witnessed the resolution of some long-standing enigmas surrounding the immunobiology of dendritic cells, illuminating their opposing roles in peripheral tolerance and allograft rejection. Nevertheless these advances have posed many new questions, the answers to which may subtly influence our approach to the treatment of rejection while bringing ever closer the prospect of donor-specific transplanation tolerance.


Journal of Immunology | 2007

Induction of Regulatory T Cells and Dominant Tolerance by Dendritic Cells Incapable of Full Activation

Stephen F. Yates; Alison M. Paterson; Kathleen F. Nolan; Stephen P. Cobbold; Nigel J. Saunders; Herman Waldmann; Paul J. Fairchild

Transplants tolerated through a process known as infectious tolerance evoke continuous recruitment of regulatory T (Treg) cells that are necessary to maintain the unresponsive state. This state is maintained long-term and requires continuous Ag exposure. It is not known, however, whether infectious tolerance operates through sustained recruitment of pre-existing regulatory cells, induction of regulatory cells, or both. Using mice deficient in natural Treg cells, we show here that quiescent donor dendritic cells (DC) laden with histocompatibility Ag can induce Treg cells de novo that mediate transplantation tolerance. In contrast, fully activated DC fail to do so. These findings suggest that DC incapable of delivering full activation signals to naive T cells may favor their polarization toward a regulatory phenotype. Furthermore, they suggest a role for quiescent endogenous DC in the maintenance of the tolerant state.

Collaboration


Dive into the Paul J. Fairchild's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Graca

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge