Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Hertzog is active.

Publication


Featured researches published by Paul J. Hertzog.


Journal of Leukocyte Biology | 2004

Interferon-γ: an overview of signals, mechanisms and functions

Kate Schroder; Paul J. Hertzog; Timothy Ravasi; David A. Hume

Interferon‐γ (IFN‐γ) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN‐γ ligand, receptor, ignal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN‐γ signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN‐γ are described, including up‐regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen‐associated molecular patterns, such as tumor necrosis factor‐α, interleukin‐4, type I IFNs, and lipopolysaccharide are discussed.


Cell | 1999

SOCS1 Is a Critical Inhibitor of Interferon γ Signaling and Prevents the Potentially Fatal Neonatal Actions of this Cytokine

Warren S. Alexander; Robyn Starr; Jennifer E Fenner; Clare L. Scott; Emanuela Handman; Naomi S Sprigg; Jason E Corbin; Ann L Cornish; Rima Darwiche; Catherine M. Owczarek; Thomas W. H. Kay; Nicola Na; Paul J. Hertzog; Donald Metcalf; Douglas J. Hilton

Mice lacking suppressor of cytokine signaling-1 (SOCS1) develop a complex fatal neonatal disease. In this study, SOCS1-/- mice were shown to exhibit excessive responses typical of those induced by interferon gamma (IFNgamma), were hyperresponsive to viral infection, and yielded macrophages with an enhanced IFNgamma-dependent capacity to kill L. major parasites. The complex disease in SOCS1-/- mice was prevented by administration of anti-IFNgamma antibodies and did not occur in SOCS1-/- mice also lacking the IFNgamma gene. Although IFNgamma is essential for resistance to a variety of infections, the potential toxic action of IFNgamma, particularly in neonatal mice, appears to require regulation. Our data indicate that SOCS1 is a key modulator of IFNgamma action, allowing the protective effects of this cytokine to occur without the risk of associated pathological responses.


Journal of Immunology | 2001

Differential Production of IL-12, IFN-α, and IFN-γ by Mouse Dendritic Cell Subsets

Hubertus Hochrein; Ken Shortman; David Vremec; Bernadette Scott; Paul J. Hertzog; Meredith O’Keeffe

Dendritic cells (DC) not only stimulate T cells effectively but are also producers of cytokines that have important immune regulatory functions. In this study we have extended information on the functional differences between DC subpopulations to include differences in the production of the major immune-directing cytokines IL-12, IFN-α, and IFN-γ. Splenic CD4−8+ DC were identified as the major IL-12 producers in response to microbiological or T cell stimuli when compared with splenic CD4−8− or CD4+8− DC; however, all three subsets of DC showed similar IL-12 regulation and responded with increased IL-12 p70 production if IL-4 was present during stimulation. High level CD8 expression also correlated with extent of IL-12 production for DC isolated from thymus and lymph nodes. By using gene knockout mice we ruled out any role for CD8α itself, or of priming by T cells, on the superior IL-12-producing capacity of the CD8+ DC. Additionally, CD8+ DC were identified as the major producers of IFN-α compared with the two CD8− DC subsets, a finding that suggests similarity to the human plasmacytoid DC lineage. In contrast, the CD4−8− DC produced much more IFN-γ than the CD4−8+ or the CD4+8− DC under all conditions tested.


Journal of Bone and Mineral Research | 1999

Cathepsin K Knockout Mice Develop Osteopetrosis Due to a Deficit in Matrix Degradation but Not Demineralization

Maxine Gowen; Francesca Lazner; Robert A. Dodds; Rasesh Kapadia; John Feild; Michael Tavaria; Ivan Bertoncello; Fred Drake; Silva Zavarselk; Irene Tellis; Paul J. Hertzog; Christine Debouck; Ismail Kola

Cathepsin K is a cysteine protease expressed predominantly in osteoclasts. Activated cathepsin K cleaves key bone matrix proteins and is believed to play an important role in degrading the organic phase of bone during bone resorption. Mutations in the human cathepsin K gene have been demonstrated to be associated with a rare skeletal dysplasia, pycnodysostosis. The degree of functional activity of the mutated forms of cathepsin K in these individuals has not been elucidated, but is predicted to be low or absent. To study the role of cathepsin K in bone resorption, we have generated mice deficient in the cathepsin K gene. Histologic and radiographic analysis of the mice revealed osteopetrosis of the long bones and vertebrae, and abnormal joint morphology. X‐ray microcomputerized tomography images allowed quantitation of the increase in bone volume, trabecular thickness, and trabecular number in both the primary spongiosa and the metaphysis of the proximal tibiae. Not all bones were similarly affected. Chondrocyte differentiation was normal. The mice also had abnormalities in hematopoietic compartments, particularly decreased bone marrow cellularity and splenomegaly. The heterozygous animals appeared normal. Close histologic examination of bone histology revealed fully differentiated osteoclasts apposed to small regions of demineralized bone. This strongly suggests that cathepsin K–deficient osteoclasts are capable of demineralizing the extracellular matrix but are unable to adequately remove the demineralized bone. This is entirely consistent with the proposed function of cathepsin K as a matrix‐degrading proteinase in bone resorption.


Nature Immunology | 2006

Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation

Ashley Mansell; Rosealee Smith; Sarah L. Doyle; Pearl Gray; Jennifer E Fenner; Peter J. Crack; Sandra E. Nicholson; Douglas J. Hilton; Luke A. J. O'Neill; Paul J. Hertzog

Toll-like receptor (TLR) signals that initiate innate immune responses to pathogens must be tightly regulated to prevent excessive inflammatory damage to the host. The adaptor protein Mal is specifically involved in signaling via TLR2 and TLR4. We demonstrate here that after TLR2 and TLR4 stimulation Mal becomes phosphorylated by Brutons tyrosine kinase (Btk) and then interacts with SOCS-1, which results in Mal polyubiquitination and subsequent degradation. Removal of SOCS-1 regulation potentiates Mal-dependent p65 phosphorylation and transactivation of NF-κB, leading to amplified inflammatory responses. These data identify a target of SOCS-1 that regulates TLR signaling via a mechanism distinct from an autocrine cytokine response. The transient activation of Mal and subsequent SOCS-1–mediated degradation is a rapid and selective means of limiting primary innate immune response.


Journal of Biological Chemistry | 1998

Mice with a Homozygous Null Mutation for the Most Abundant Glutathione Peroxidase, Gpx1, Show Increased Susceptibility to the Oxidative Stress-inducing Agents Paraquat and Hydrogen Peroxide*

Judy B. de Haan; Cecile Bladier; Peter Griffiths; Michael J. Kelner; Ross D. O’Shea; Nam Sang Cheung; Roderick T. Bronson; Mary J. Silvestro; Steven Wild; Shao Shan Zheng; Philip M. Beart; Paul J. Hertzog; Ismail Kola

Glutathione peroxidases have been thought to function in cellular antioxidant defense. However, some recent studies on Gpx1 knockout (−/−) mice have failed to show a role for Gpx1 under conditions of oxidative stress such as hyperbaric oxygen and the exposure of eye lenses to high levels of H2O2. These findings have, unexpectedly, raised the issue of the role of Gpx1, especially under conditions of oxidative stress. Here we demonstrate a role for Gpx1 in protection against oxidative stress by showing that Gpx1 (−/−) mice are highly sensitive to the oxidant paraquat. Lethality was already detected within 24 h in mice exposed to paraquat at 10 mg·kg−1 (approximately 1 7 the LD50of wild-type controls). The effects of paraquat were dose-related. In the 30 mg·kg−1-treated group, 100% of mice died within 5 h, whereas the controls showed no evidence of toxicity. We further demonstrate that paraquat transcriptionally up-regulatesGpx1 in normal cells, reinforcing a role forGpx1 in protection against paraquat toxicity. Finally, we show that cortical neurons from Gpx1 (−/−) mice are more susceptible to H2O2; 30% of neurons fromGpx1 (−/−) mice were killed when exposed to 65 μm H2O2, whereas the wild-type controls were unaffected. These data establish a function for Gpx1 in protection against some oxidative stressors and in protection of neurons against H2O2. Further, they emphasize the need to elucidate the role of Gpx1 in protection against different oxidative stressors and in different disease states and suggest thatGpx1 (−/−) mice may be valuable for studying the role of H2O2 in neurodegenerative disorders.


Journal of Experimental Medicine | 2002

Mouse Plasmacytoid Cells: Long-lived Cells, Heterogeneous in Surface Phenotype and Function, that Differentiate Into CD8+ Dendritic Cells Only after Microbial Stimulus

Meredith O'Keeffe; Hubertus Hochrein; David Vremec; Irina Caminschi; Joanna L. Miller; E. Margot Anders; Li Wu; Mireille H. Lahoud; Sandrine Henri; Bernadette Scott; Paul J. Hertzog; Lilliana Tatarczuch; Ken Shortman

The CD45RAhiCD11cint plasmacytoid predendritic cells (p-preDCs) of mouse lymphoid organs, when stimulated in culture with CpG or influenza virus, produce large amounts of type I interferons and transform without division into CD8+CD205− DCs. P-preDCs express CIRE, the murine equivalent of DC-specific intercellular adhesion molecule 3 grabbing nonintegrin (DC-SIGN). P-preDCs are divisible by CD4 expression into two subgroups differing in turnover rate and in response to Staphylococcus aureus. The kinetics of bromodeoxyuridine labeling and the results of transfer to normal recipient mice indicate that CD4− p-preDCs are the immediate precursors of CD4+ p-preDCs. Similar experiments indicate that p-preDCs are normally long lived and are not the precursors of the short-lived steady-state conventional DCs. However, in line with the culture studies on transfer to influenza virus-stimulated mice the p-preDCs transform into CD8+CD205− DCs, distinct from conventional CD8+CD205+ DCs. Hence as well as activating preexistant DCs, microbial infection induces a wave of production of a new DC subtype. The functional implications of this shift in the DC network remain to be determined.


Journal of Biological Chemistry | 2007

Type I interferon receptors : Biochemistry and biological functions

Nicole Anne De Weerd; Shamith Samarajiwa; Paul J. Hertzog

The type I interferon (IFN)2 receptor (IFNAR) is comprised, as other cytokine receptors, of multiple components, in this case designated IFNAR1 and IFNAR2. However it is unique among cytokine receptors in the number of cognate ligands, including 13 IFN subtypes, , , , , and others in some species. The type I IFN receptors are distinct from those required for the type II IFN (IFNGR1 and IFNGR2) and type III IFNs (IFNLR and IL10R ). Nevertheless, genes encoding a component of each type of IFN receptor, namely IFNAR1, IFNAR2, IFNGR2, and IL10R , are located on human chromosome 21q22.1 in a cytokine receptor gene cluster, as typical of functionally related genes. Although IFNswere identified 50 years ago and the existence of IFN receptors 10 years later, it was in 1990when the first type I IFN receptor, now designated IFNAR1, was cloned. This was achieved utilizing human gene libraries expressed in murine cells and rescue of the definitive, species specific antiviral activity of human IFN 8 (1). IFNAR2 cloning was achieved first by identifying a human IFN binding activity in urine, peptide sequencing, and then by gene library screening with derived oligonucleotides (2). It was subsequently discovered that the original cDNA encoded only one isoform of the IFNAR2 gene, which also encoded a long transmembrane isoform that transduced a signal, a truncated transmembrane isoform, and a soluble/secreted isoform (3) (Fig. 1A). Subsequently, the functions of the type I IFN receptors have been elucidated with respect to ligand interaction, mechanisms of signal transduction, and biological responses. The pioneering studies that discovered IFNARs and their mechanisms of actions in vitro have been largely validated in vivo using genetargetedmice. This body of work has highlighted the important roles of IFNARs inmediating type I IFN responses in hemopoiesis and innate and acquired immunity to infection and cancer. However, IFNs elicit many biological effects that can even be opposite in different cell types. For example, type I IFN inhibits proliferation and is proapoptotic for many cell types (4), yet it prolongs the survival of memory T cells (5). Understanding the function of the IFNAR complexwill elucidate how such a diversity of biological outcomes is generated.


Nucleic Acids Research | 2011

Analysis of microRNA turnover in mammalian cells following Dicer1 ablation

Michael P. Gantier; Claire E. McCoy; Irina Rusinova; Damien Saulep; Die Wang; Dakang Xu; Aaron T. Irving; Mark A. Behlke; Paul J. Hertzog; Fabienne Mackay; Bryan R. G. Williams

Although microRNAs (miRNAs) are key regulators of gene expression, little is known of their overall persistence in the cell following processing. Characterization of such persistence is key to the full appreciation of their regulatory roles. Accordingly, we measured miRNA decay rates in mouse embryonic fibroblasts following loss of Dicer1 enzymatic activity. The results confirm the inherent stability of miRNAs, the intracellular levels of which were mostly affected by cell division. Using the decay rates of a panel of six miRNAs representative of the global trend of miRNA decay, we establish a mathematical model of miRNA turnover and determine an average miRNA half-life of 119 h (i.e. ∼5 days). In addition, we demonstrate that select miRNAs turnover more rapidly than others. This study constitutes, to our knowledge, the first in-depth characterization of miRNA decay in mammalian cells. Our findings indicate that miRNAs are up to 10× more stable than messenger RNA and support the existence of novel mechanism(s) controlling selective miRNA cellular concentration and function.


Nucleic Acids Research | 2012

INTERFEROME v2.0: an updated database of annotated interferon-regulated genes

Irina Rusinova; Samuel C. Forster; Simon Yu; Anitha Kannan; Marion Masse; Helen Cumming; Ross Chapman; Paul J. Hertzog

Interferome v2.0 (http://interferome.its.monash.edu.au/interferome/) is an update of an earlier version of the Interferome DB published in the 2009 NAR database edition. Vastly improved computational infrastructure now enables more complex and faster queries, and supports more data sets from types I, II and III interferon (IFN)-treated cells, mice or humans. Quantitative, MIAME compliant data are collected, subjected to thorough, standardized, quantitative and statistical analyses and then significant changes in gene expression are uploaded. Comprehensive manual collection of metadata in v2.0 allows flexible, detailed search capacity including the parameters: range of -fold change, IFN type, concentration and time, and cell/tissue type. There is no limit to the number of genes that can be used to search the database in a single query. Secondary analysis such as gene ontology, regulatory factors, chromosomal location or tissue expression plots of IFN-regulated genes (IRGs) can be performed in Interferome v2.0, or data can be downloaded in convenient text formats compatible with common secondary analysis programs. Given the importance of IFN to innate immune responses in infectious, inflammatory diseases and cancer, this upgrade of the Interferome to version 2.0 will facilitate the identification of gene signatures of importance in the pathogenesis of these diseases.

Collaboration


Dive into the Paul J. Hertzog's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jodee Gould

Monash Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Niamh E. Mangan

Monash Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ashley Mansell

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Samuel C. Forster

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nicole Anne De Weerd

Monash Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sebastian A. Stifter

Monash Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge