Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Lucassen is active.

Publication


Featured researches published by Paul J. Lucassen.


Ageing Research Reviews | 2005

The stress system in the human brain in depression and neurodegeneration

Dick F. Swaab; Ai-Min Bao; Paul J. Lucassen

Corticotropin-releasing hormone (CRH) plays a central role in the regulation of the hypothalamic-pituitary-adrenal (HPA)-axis, i.e., the final common pathway in the stress response. The action of CRH on ACTH release is strongly potentiated by vasopressin, that is co-produced in increasing amounts when the hypothalamic paraventricular neurons are chronically activated. Whereas vasopressin stimulates ACTH release in humans, oxytocin inhibits it. ACTH release results in the release of corticosteroids from the adrenal that, subsequently, through mineralocorticoid and glucocorticoid receptors, exert negative feedback on, among other things, the hippocampus, the pituitary and the hypothalamus. The most important glucocorticoid in humans is cortisol, present in higher levels in women than in men. During aging, the activation of the CRH neurons is modest compared to the extra activation observed in Alzheimers disease (AD) and the even stronger increase in major depression. The HPA-axis is hyperactive in depression, due to genetic factors or due to aversive stimuli that may occur during early development or adult life. At least five interacting hypothalamic peptidergic systems are involved in the symptoms of major depression. Increased production of vasopressin in depression does not only occur in neurons that colocalize CRH, but also in neurons of the supraoptic nucleus (SON), which may lead to increased plasma levels of vasopressin, that have been related to an enhanced suicide risk. The increased activity of oxytocin neurons in the paraventricular nucleus (PVN) may be related to the eating disorders in depression. The suprachiasmatic nucleus (SCN), i.e., the biological clock of the brain, shows lower vasopressin production and a smaller circadian amplitude in depression, which may explain the sleeping problems in this disorder and may contribute to the strong CRH activation. The hypothalamo-pituitary thyroid (HPT)-axis is inhibited in depression. These hypothalamic peptidergic systems, i.e., the HPA-axis, the SCN, the SON and the HPT-axis, have many interactions with aminergic systems that are also implicated in depression. CRH neurons are strongly activated in depressed patients, and so is their HPA-axis, at all levels, but the individual variability is large. It is hypothesized that particularly a subgroup of CRH neurons that projects into the brain is activated in depression and induces the symptoms of this disorder. On the other hand, there is also a lot of evidence for a direct involvement of glucocorticoids in the etiology and symptoms of depression. Although there is a close association between cerebrospinal fluid (CSF) levels of CRH and alterations in the HPA-axis in depression, much of the CRH in CSF is likely to be derived from sources other than the PVN. Furthermore, a close interaction between the HPA-axis and the hypothalamic-pituitary-gonadal (HPG)-axis exists. Organizing effects during fetal life as well as activating effects of sex hormones on the HPA-axis have been reported. Such mechanisms may be a basis for the higher prevalence of mood disorders in women as compared to men. In addition, the stress system is affected by changing levels of sex hormones, as found, e.g., in the premenstrual period, ante- and postpartum, during the transition phase to the menopause and during the use of oral contraceptives. In depressed women, plasma levels of estrogen are usually lower and plasma levels of androgens are increased, while testosterone levels are decreased in depressed men. This is explained by the fact that both in depressed males and females the HPA-axis is increased in activity, parallel to a diminished HPG-axis, while the major source of androgens in women is the adrenal, whereas in men it is the testes. It is speculated, however, that in the etiology of depression the relative levels of sex hormones play a more important role than their absolute levels. Sex hormone replacement therapy indeed seems to improve mood in elderly people and AD patients. Studies of rats have shown that high levels of cumulative corticosteroid exposure and rather extreme chronic stress induce neuronal damage that selectively affects hippocampal structure. Studies performed under less extreme circumstances have so far provided conflicting data. The corticosteroid neurotoxicity hypothesis that evolved as a result of these initial observations is, however, not supported by clinical and experimental observations. In a few recent postmortem studies in patients treated with corticosteroids and patients who had been seriously and chronically depressed no indications for AD neuropathology, massive cell loss, or loss of plasticity could be found, while the incidence of apoptosis was extremely rare and only seen outside regions expected to be at risk for steroid overexposure. In addition, various recent experimental studies using good stereological methods failed to find massive cell loss in the hippocampus following exposure to stress or steroids, but rather showed adaptive and reversible changes in structural parameters after stress. Thus, the HPA-axis in AD is only moderately activated, possibly due to the initial (primary) hippocampal degeneration in this condition. There are no convincing arguments to presume a causal, primary role for cortisol in the pathogenesis of AD. Although cortisol and CRH may well be causally involved in the signs and symptoms of depression, there is so far no evidence for any major irreversible damage in the human hippocampus in this disorder.


European Archives of Psychiatry and Clinical Neuroscience | 2007

What causes the hippocampal volume decrease in depression? : Are neurogenesis, glial changes and apoptosis implicated?

Boldizsár Czéh; Paul J. Lucassen

Even though in vivo imaging studies document significant reductions of hippocampal volume in depressed patients, the exact underlying cellular mechanisms are unclear. Since stressful life events are associated with an increased risk of developing depression, preclinical studies in which animals are exposed to chronic stress have been used to understand the hippocampal shrinkage in depressed patients. Based on morphometrical studies in these models, parameters like dendritic retraction, suppressed adult neurogenesis and neuronal death, all due to elevated levels of glucocorticoids, have been suggested as major causative factors in hippocampal shrinkage. However, histopathological studies examining hippocampi of depressed individuals have so far failed to confirm either a massive neuronal loss or a suppression of dentate neurogenesis, an event that is notably very rare in adult or elderly humans. In fact, many of the structural changes and the volume reduction appear to be reversible. Clearly, more histopathological studies are needed; especially ones that (a) employ stereological quantification, (b) focus on specific cellular elements and populations, and (c) are performed in nonmedicated depressed patients. We conclude that mainly other factors, like alterations in the somatodendritic, axonal, and synaptic components and putative glial changes are most likely to explain the hippocampal shrinkage in depression, while shifts in fluid balance or changes in the extracellular space cannot be excluded either.


European Neuropsychopharmacology | 2010

Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action

Paul J. Lucassen; Peter Meerlo; A.S. Naylor; A.M. van Dam; Alexandre Dayer; Eberhard Fuchs; C.A. Oomen; Boldizsar Czeh

Adult hippocampal neurogenesis, a once unorthodox concept, has changed into one of the most rapidly growing fields in neuroscience. The present report results from the ECNP targeted expert meeting in 2007 during which cellular plasticity changes were addressed in the adult brain, focusing on neurogenesis and apoptosis in hippocampus and frontal cortex. We discuss recent studies investigating factors that regulate neurogenesis with special emphasis on effects of stress, sleep disruption, exercise and inflammation, a group of seemingly unrelated factors that share at least two unifying properties, namely that they all regulate adult hippocampal neurogenesis and have all been implicated in the pathophysiology of mood disorders. We conclude that although neurogenesis has been implicated in cognitive function and is stimulated by antidepressant drugs, its functional impact and contribution to the etiology of depression remains unclear. A lasting reduction in neurogenesis following severe or chronic stress exposure, either in adult or early life, may represent impaired hippocampal plasticity and can contribute to the cognitive symptoms of depression, but is, by itself, unlikely to produce the full mood disorder. Normalization of reductions in neurogenesis appears at least partly, implicated in antidepressant action.


Frontiers in Neuroendocrinology | 2007

Chronic stress : Implications for neuronal morphology, function and neurogenesis

Marian Joëls; Henk Karst; Harmen J. Krugers; Paul J. Lucassen

In normal life, organisms are repeatedly exposed to brief periods of stress, most of which can be controlled and adequately dealt with. The presently available data indicate that such brief periods of stress have little influence on the shape of neurons or adult neurogenesis, yet change the physiological function of cells in two time-domains. Shortly after stress excitability in limbic areas is rapidly enhanced, but also in brainstem neurons which produce catecholamines; collectively, during this phase the stress hormones promote focused attention, alertness, vigilance and the initial steps in encoding of information linked to the event. Later on, when the hormone concentrations are back to their pre-stress level, gene-mediated actions by corticosteroids reverse and normalize the enhanced excitability, an adaptive response meant to curtail defense reactions against stressors and to enable further storage of relevant information. When stress is experienced repetitively in an uncontrollable and unpredictable manner, a cascade of processes in brain is started which eventually leads to profound, region-specific alterations in dendrite and spine morphology, to suppression of adult neurogenesis and to inappropriate functional responses to a brief stress exposure including a sensitized activation phase and inadequate normalization of brain activity. Although various compounds can effectively prevent these cellular changes by chronic stress, the exact mechanism by which the effects are accomplished is poorly understood. One of the challenges for future research is to link the cellular changes seen in animal models for chronic stress to behavioral effects and to understand the risks they can impose on humans for the precipitation of stress-related disorders.


Neurobiology of Aging | 2004

Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation

Vivi M. Heine; Suharti Maslam; Marian Joëls; Paul J. Lucassen

Neurogenesis and apoptosis in the hippocampal dentate gyrus (DG) occur during development and adulthood. However, little is known about how these two processes relate to each other during aging. In this study, we examined apoptosis, proliferation, migration, and survival of newborn cells in the young (2 weeks), young-adult (6 weeks), middle-aged (12 months), and old (24 months) rat DG. We also measured dentate volume and cell numbers, along with basal corticosterone and stress response parameters. We show that new cell proliferation and apoptosis slow down profoundly over this time period. Moreover, migration and differentiation into a neuronal or glial phenotype was strongly reduced from 6 weeks of age onwards; it was hardly present in middle-aged and old rats as confirmed by confocal analysis. Surprisingly, we found no correlation between cell birth and corticosterone levels or stress response parameters in any age group.


American Journal of Pathology | 2001

Hippocampal Apoptosis in Major Depression Is a Minor Event and Absent from Subareas at Risk for Glucocorticoid Overexposure

Paul J. Lucassen; Marianne B. Müller; Florian Holsboer; Jan Bauer; Anne Holtrop; Jose Wouda; Witte J. G. Hoogendijk; E. Ron de Kloet; Dick F. Swaab

Glucocorticoid (GC) overexposure in animals has been implicated in hippocampal dysfunctioning and neuronal loss. In major depression, hypercortisolemia, hypothalamic-pituitary-adrenocortical-axis alterations, and reduced hippocampal volumes are commonly observed; hence, hippocampal neurodegeneration is also expected. To study possible GC-related pathology, we investigated hippocampal tissue of 15 major-depressed patients, 16 matched controls, and 9 steroid-treated patients, using in situ-end-labeling for DNA fragmentation and apoptosis, and heat-shock protein 70 and nuclear transcription factor kappaB immunocytochemistry for damage-related responses. No obvious massive cell loss was observed in any group. In 11 of 15 depressed patients, rare, but convincing apoptosis was found in entorhinal cortex, subiculum, dentate gyrus, CA1, and CA4. Also in three steroid-treated patients, apoptosis was found. Except for several steroid-treated patients, heat-shock protein 70 staining was generally absent, nor was nuclear transcription factor-kappaB activation found. The detection in 11 of 15 depressed patients, in three steroid-treated, and in one control patient, demonstrates for the first time that apoptosis is involved in steroid-related changes in the human hippocampus. However, in absence of major pyramidal loss, its rare occurrence, that notably was absent from areas at risk for GC damage such as CA3, indicates that apoptosis probably only contributes to a minor extent to the volume changes in depression.


Neurobiology of Disease | 2006

Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus.

Karin Boekhoorn; Marian Joëls; Paul J. Lucassen

Adult proliferation and hippocampal neurogenesis are stimulated by injury. In agreement, aberrant cell-cycle-related protein expression has been reported in senile Alzheimers disease (AD), where the hippocampus is particularly affected. Recently, increased expression of doublecortin (DCX), a neurogenesis marker, was reported in senile AD. Here, we addressed whether proliferative and neurogenic responses also occur in younger, i.e., presenile AD cases, using immunohistochemistry for Ki-67, GFAP and DCX. Increased numbers of Ki-67+ cells with a healthy, non-mature appearance were found in CA1-3. These were mainly due to glial and vasculature-associated changes, while DCX immunostaining appeared sensitive to postmortem breakdown. We found no indications for altered dentate gyrus neurogenesis. Our data obtained using validated methodology in a well-characterized, presenile cohort thus differ from previous data obtained in senile AD. They reflect clear differences in proliferative responsivity, particularly in the glia and vascular components, and suggest different underlying mechanisms in these groups.


The Journal of Neuroscience | 2010

Severe Early Life Stress Hampers Spatial Learning and Neurogenesis, but Improves Hippocampal Synaptic Plasticity and Emotional Learning under High-Stress Conditions in Adulthood

C.A. Oomen; H. Soeters; N. Audureau; L. Vermunt; F.N. van Hasselt; Erik M. M. Manders; Marian Joëls; Paul J. Lucassen; Hj Krugers

Early life stress increases the risk for developing stress-related pathologies later in life. Recent studies in rats suggest that mild early life stress, rather than being overall unfavorable, may program the hippocampus such that it is optimally adapted to a stressful context later in life. Here, we tested whether this principle of “adaptive programming” also holds under severely adverse early life conditions, i.e., 24 h of maternal deprivation (MD), a model for maternal neglect. In young adult male rats subjected to MD on postnatal day 3, we observed reduced levels of adult hippocampal neurogenesis as measured by cell proliferation, cell survival, and neuronal differentiation. Also, mature dentate granule cells showed a change in their dendritic morphology that was most noticeable in the proximal part of the dendritic tree. Lasting structural changes due to MD were paralleled by impaired water maze acquisition but did not affect long-term potentiation in the dentate gyrus. Importantly, in the presence of high levels of the stress hormone corticosterone, even long-term potentiation in the dentate gyrus of MD animals was facilitated. In addition to this, contextual learning in a high-stress environment was enhanced in MD rats. These morphological, electrophysiological, and behavioral observations show that even a severely adverse early life environment does not evolve into overall impaired hippocampal functionality later in life. Rather, adversity early in life can prepare the organism to perform optimally under conditions associated with high corticosteroid levels in adulthood.


Stress | 2004

Effects of chronic stress on structure and cell function in rat hippocampus and hypothalamus

Marian Joëls; Henk Karst; Deborah N. Alfarez; Vivi M. Heine; Yongjun Qin; Els van Riel; Martin Verkuyl; Paul J. Lucassen; Harm J. Krugers

It has become increasingly clear that the increase in corticosteroid levels, e.g. after a brief stressor induce molecular and cellular changes in brain, including the hippocampal formation. These effects eventually result in behavioral adaptation. Prolonged exposure to stress, though, may lead to mal-adaptation and even be a risk factor for diseases like major depression in genetically predisposed individuals. We conducted a series of experiments where changes in brain function were examined after 3 weeks of unpredictable stress. After unpredictable stress, inhibitory input to neurons involved in the hypothalamus-pituitary-adrenal (HPA) axis regulation was suppressed, which may dysregulate the axis and lead to overexposure of the brain to glucocorticoids. Furthermore, glutamate transmission in the dentate gyrus (DG) was enhanced, possibly through transcriptional regulation of receptor subunits. Combined with enhanced calcium channel expression this could increase vulnerability to cell death. Neurogenesis and apoptosis in the dentate were diminished. Synaptic plasticity was suppressed both in the dentate and CA1 area. Collectively, these effects may give rise to deficits in memory formation. Finally, we observed reduced responses to serotonin in the CA1 area, which could contribute to the onset of symptoms of depression in predisposed individuals. All of these endpoints provide potential targets for novel treatment strategies of stress-related brain disorders.


European Neuropsychopharmacology | 2004

Alterations of neuroplasticity in depression: the hippocampus and beyond

Eberhard Fuchs; Boldizsár Czéh; Maarten H. P. Kole; Thomas Michaelis; Paul J. Lucassen

Early hypotheses on the pathophysiology of major depression were based on aberrant intrasynaptic concentrations of mainly the neurotransmitters serotonin and norepinephrine. However, recent neuroimaging studies have demonstrated selective structural changes across various limbic and nonlimbic circuits in the brains of depressed patients. In addition, postmortem morphometric studies revealed decreased glial and neuron densities in selected brain structures supporting the idea that major depression may be related to impairments of structural plasticity. Stressful life events are among the major predisposing risk factors for developing depression. Using the chronic psychosocial stress paradigm in male tree shrews, an animal model with a high validity for the pathophysiology of depressive disorders, we found that 1 month of stress reduced the in vivo concentrations of the brain metabolites N-acetyl-aspartate, choline-containing compounds, and (phospho)-creatine, as well as the proliferation rate in the dentate gyrus and the hippocampal volume. Even though long-lasting social conflict does not lead to a loss of principal cells, the hippocampal changes were accompanied by modifications in the incidence of apoptosis. Notably, these suppressive effects of social conflict on hippocampal structure could be counteracted by treatment with the antidepressant tianeptine. These findings support current theories proposing that major depressive disorders may be associated with impairment of structural plasticity and neural cellular resilience, and that antidepressants may act by correcting this dysfunction.

Collaboration


Dive into the Paul J. Lucassen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dick F. Swaab

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Top Co-Authors

Avatar

Aniko Korosi

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.A. Oomen

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge