Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J.M. Wijnker is active.

Publication


Featured researches published by Paul J.M. Wijnker.


Circulation Research | 2013

Perturbed Length-Dependent Activation in Human Hypertrophic Cardiomyopathy With Missense Sarcomeric Gene Mutations

Vasco Sequeira; Paul J.M. Wijnker; Louise L.A.M. Nijenkamp; Diederik W. D. Kuster; Aref Najafi; E. Rosalie Witjas-Paalberends; Jessica Regan; Nicky M. Boontje; Folkert J. ten Cate; Tjeerd Germans; Lucie Carrier; Sakthivel Sadayappan; Marjon van Slegtenhorst; Ruud Zaremba; D. Brian Foster; Anne M. Murphy; Corrado Poggesi; Cris dos Remedios; Ger J.M. Stienen; Carolyn Y. Ho; Michelle Michels; Jolanda van der Velden

Rationale: High-myofilament Ca2+ sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca2+ sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. Objective: To investigate whether high myofilament Ca2+ sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. Methods and Results: Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca2+ sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca2+ sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. Conclusions: High-myofilament Ca2+ sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein–protein interactions, and represents a common pathomechanism in HCM.


Nature Communications | 2014

Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice

Giulia Mearini; Doreen Stimpel; Birgit Geertz; Florian Weinberger; Elisabeth Krämer; Saskia Schlossarek; Julia Mourot-Filiatre; Andrea Stoehr; Alexander Dutsch; Paul J.M. Wijnker; Ingke Braren; Hugo A. Katus; Oliver Müller; Thomas Voit; Thomas Eschenhagen; Lucie Carrier

Homozygous or compound heterozygous frameshift mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C) cause neonatal hypertrophic cardiomyopathy (HCM), which rapidly evolves into systolic heart failure and death within the first year of life. Here we show successful long-term Mybpc3 gene therapy in homozygous Mybpc3-targeted knock-in (KI) mice, which genetically mimic these human neonatal cardiomyopathies. A single systemic administration of adeno-associated virus (AAV9)-Mybpc3 in 1-day-old KI mice prevents the development of cardiac hypertrophy and dysfunction for the observation period of 34 weeks and increases Mybpc3 messenger RNA (mRNA) and cMyBP-C protein levels in a dose-dependent manner. Importantly, Mybpc3 gene therapy unexpectedly also suppresses accumulation of mutant mRNAs. This study reports the first successful long-term gene therapy of HCM with correction of both haploinsufficiency and production of poison peptides. In the absence of alternative treatment options except heart transplantation, gene therapy could become a realistic treatment option for severe neonatal HCM.


Journal of Muscle Research and Cell Motility | 2011

Protein phosphatase 2A affects myofilament contractility in non-failing but not in failing human myocardium

Paul J.M. Wijnker; Peter Boknik; Ulrich Gergs; Frank U. Müller; Joachim Neumann; Cris dos Remedios; Wilhelm Schmitz; Jürgen R. Sindermann; Ger J.M. Stienen; Jolanda van der Velden; Uwe Kirchhefer

Protein phosphatase (PP) type 2A is a multifunctional serine/threonine phosphatase that is involved in cardiac excitation–contraction coupling. The PP2A core enzyme is a dimer, consisting of a catalytic C and a scaffolding A subunit, which is targeted to several cardiac proteins by a regulatory B subunit. At present, it is controversial whether PP2A and its subunits play a critical role in end-stage human heart failure. Here we report that the application of purified PP2AC significantly increased the Ca2+-sensitivity (ΔpCa50xa0=xa00.05xa0±xa00.01) of the contractile apparatus in isolated skinned myocytes of non-failing (NF) hearts. A higher phosphorylation of troponin I (cTnI) was found at protein kinase A sites (Ser23/24) in NF compared to failing myocardium. The basal Ca2+-responsiveness of myofilaments was enhanced in myocytes of ischemic (ICM, ΔpCa50xa0=xa00.10xa0±xa00.03) and dilated (DCM, ΔpCa50xa0=xa00.06xa0±xa00.04) cardiomyopathy compared to NF. However, in contrast to NF myocytes the treatment with PP2AC did not shift force-pCa relationships in failing myocytes. The higher basal Ca2+-sensitivity in failing myocytes coincided with a reduced protein expression of PP2AC in left ventricular tissue from patients suffering from ICM and DCM (by 50 and 56% compared to NF, respectively). However, PP2A activity was unchanged in failing hearts despite an increase of both total PP and PP1 activity. The expression of PP2AB56α was also decreased by 51 and 62% in ICM and DCM compared to NF, respectively. The phosphorylation of cTnI at Ser23/24 was reduced by 66 and 49% in ICM and DCM compared to NF hearts, respectively. Our results demonstrate that PP2A increases myofilament Ca2+-sensitivity in NF human hearts, most likely via cTnI dephosphorylation. This effect is not present in failing hearts, probably due to the lower baseline cTnI phosphorylation in failing compared to non-failing hearts.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Impact of site-specific phosphorylation of protein kinase a sites ser23 and ser24 of cardiac troponin i in human cardiomyocytes

Paul J.M. Wijnker; D. Brian Foster; Allison Tsao; Aisha Frazier; Cristobal G. dos Remedios; Anne M. Murphy; Ger J.M. Stienen; Jolanda van der Velden

PKA-mediated phosphorylation of contractile proteins upon β-adrenergic stimulation plays an important role in the regulation of cardiac performance. Phosphorylation of the PKA sites (Ser(23)/Ser(24)) of cardiac troponin (cTn)I results in a decrease in myofilament Ca(2+) sensitivity and an increase in the rate of relaxation. However, the relation between the level of phosphorylation of the sites and the functional effects in the human myocardium is unknown. Therefore, site-directed mutagenesis was used to study the effects of phosphorylation at Ser(23) and Ser(24) of cTnI on myofilament function in human cardiac tissue. Serines were replaced by aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. cTnI-DD mimics both sites phosphorylated, cTnI-AD mimics Ser(23) unphosphorylated and Ser(24) phosphorylated, cTnI-DA mimics Ser(23) phosphorylated and Ser(24) unphosphorylated, and cTnI-AA mimics both sites unphosphorylated. Force development was measured at various Ca(2+) concentrations in permeabilized cardiomyocytes in which the endogenous troponin complex was exchanged with these recombinant human troponin complexes. In donor cardiomyocytes, myofilament Ca(2+) sensitivity (pCa(50)) was significantly lower in cTnI-DD (pCa(50): 5.39 ± 0.01) compared with cTnI-AA (pCa(50): 5.50 ± 0.01), cTnI-AD (pCa(50): 5.48 ± 0.01), and cTnI-DA (pCa(50): 5.51 ± 0.01) at ~70% cTn exchange. No effects were observed on the rate of tension redevelopment. In cardiomyocytes from idiopathic dilated cardiomyopathic tissue, a linear decline in pCa(50) with cTnI-DD content was observed, saturating at ~55% bisphosphorylation. Our data suggest that in the human myocardium, phosphorylation of both PKA sites on cTnI is required to reduce myofilament Ca(2+) sensitivity, which is maximal at ~55% bisphosphorylated cTnI. The implications for in vivo cardiac function in health and disease are detailed in the DISCUSSION in this article.


American Journal of Physiology-heart and Circulatory Physiology | 2014

Length-dependent activation is modulated by cardiac troponin I bisphosphorylation at Ser23 and Ser24 but not by Thr143 phosphorylation.

Paul J.M. Wijnker; Vasco Sequeira; D. Brian Foster; Yuejin Li; Cristobal G. dos Remedios; Anne M. Murphy; Ger J.M. Stienen; Jolanda van der Velden

Frank-Starlings law reflects the ability of the heart to adjust the force of its contraction to changes in ventricular filling, a property based on length-dependent myofilament activation (LDA). The threonine at amino acid 143 of cardiac troponin I (cTnI) is prerequisite for the length-dependent increase in Ca(2+) sensitivity. Thr143 is a known target of protein kinase C (PKC) whose activity is increased in cardiac disease. Thr143 phosphorylation may modulate length-dependent myofilament activation in failing hearts. Therefore, we investigated if pseudo-phosphorylation at Thr143 modulates length dependence of force using troponin exchange experiments in human cardiomyocytes. In addition, we studied effects of protein kinase A (PKA)-mediated cTnI phosphorylation at Ser23/24, which has been reported to modulate LDA. Isometric force was measured at various Ca(2+) concentrations in membrane-permeabilized cardiomyocytes exchanged with recombinant wild-type (WT) troponin or troponin mutated at the PKC site Thr143 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after incubation with exogenous PKA. Pseudo-phosphorylation of Thr143 increased myofilament Ca(2+) sensitivity compared with WT without affecting LDA in failing and donor cardiomyocytes. Subsequent PKA treatment enhanced the length-dependent shift in Ca(2+) sensitivity after WT and 143D exchange. Exchange with Ser23/24 variants demonstrated that pseudo-phosphorylation of both Ser23 and Ser24 is needed to enhance the length-dependent increase in Ca(2+) sensitivity. cTnI pseudo-phosphorylation did not alter length-dependent changes in maximal force. Thus phosphorylation at Thr143 enhances myofilament Ca(2+) sensitivity without affecting LDA, while Ser23/24 bisphosphorylation is needed to enhance the length-dependent increase in myofilament Ca(2+) sensitivity.


Circulation Research | 2013

GSK3β phosphorylates newly identified site in the proline-alanine-rich region of cardiac myosin-binding protein C and alters cross-bridge cycling kinetics in human: short communication.

Diederik W. D. Kuster; Vasco Sequeira; Aref Najafi; Nicky M. Boontje; Paul J.M. Wijnker; E. Rosalie Witjas-Paalberends; Steven B. Marston; Cristobal G. dos Remedios; Lucie Carrier; Jeroen Demmers; Charles Redwood; Sakthivel Sadayappan; Jolanda van der Velden

Rationale: Cardiac myosin–binding protein C (cMyBP-C) regulates cross-bridge cycling kinetics and, thereby, fine-tunes the rate of cardiac muscle contraction and relaxation. Its effects on cardiac kinetics are modified by phosphorylation. Three phosphorylation sites (Ser275, Ser284, and Ser304) have been identified in vivo, all located in the cardiac-specific M-domain of cMyBP-C. However, recent work has shown that up to 4 phosphate groups are present in human cMyBP-C. Objective: To identify and characterize additional phosphorylation sites in human cMyBP-C. Methods and Results: Cardiac MyBP-C was semipurified from human heart tissue. Tandem mass spectrometry analysis identified a novel phosphorylation site on serine 133 in the proline-alanine–rich linker sequence between the C0 and C1 domains of cMyBP-C. Unlike the known sites, Ser133 was not a target of protein kinase A. In silico kinase prediction revealed glycogen synthase kinase 3&bgr; (GSK3&bgr;) as the most likely kinase to phosphorylate Ser133. In vitro incubation of the C0C2 fragment of cMyBP-C with GSK3&bgr; showed phosphorylation on Ser133. In addition, GSK3&bgr; phosphorylated Ser304, although the degree of phosphorylation was less compared with protein kinase A–induced phosphorylation at Ser304. GSK3&bgr; treatment of single membrane–permeabilized human cardiomyocytes significantly enhanced the maximal rate of tension redevelopment. Conclusions: GSK3&bgr; phosphorylates cMyBP-C on a novel site, which is positioned in the proline-alanine–rich region and increases kinetics of force development, suggesting a noncanonical role for GSK3&bgr; at the sarcomere level. Phosphorylation of Ser133 in the linker domain of cMyBP-C may be a novel mechanism to regulate sarcomere kinetics.


Circulation Research | 2012

GSK3β Phosphorylates Newly Identified Site in the Pro-Ala Rich Region of Cardiac Myosin Binding Protein C and Alters Cross-Bridge Cycling Kinetics in Human

Diederik W. D. Kuster; Vasco Sequeira; Aref Najafi; Nicky M. Boontje; Paul J.M. Wijnker; E. Rosalie Witjas-Paalberends; Steven B. Marston; Cristobal G. dos Remedios; Lucie Carrier; Jeroen Demmers; Charles Redwood; Sakthivel Sadayappan; Jolanda van der Velden

Rationale: Cardiac myosin–binding protein C (cMyBP-C) regulates cross-bridge cycling kinetics and, thereby, fine-tunes the rate of cardiac muscle contraction and relaxation. Its effects on cardiac kinetics are modified by phosphorylation. Three phosphorylation sites (Ser275, Ser284, and Ser304) have been identified in vivo, all located in the cardiac-specific M-domain of cMyBP-C. However, recent work has shown that up to 4 phosphate groups are present in human cMyBP-C. Objective: To identify and characterize additional phosphorylation sites in human cMyBP-C. Methods and Results: Cardiac MyBP-C was semipurified from human heart tissue. Tandem mass spectrometry analysis identified a novel phosphorylation site on serine 133 in the proline-alanine–rich linker sequence between the C0 and C1 domains of cMyBP-C. Unlike the known sites, Ser133 was not a target of protein kinase A. In silico kinase prediction revealed glycogen synthase kinase 3&bgr; (GSK3&bgr;) as the most likely kinase to phosphorylate Ser133. In vitro incubation of the C0C2 fragment of cMyBP-C with GSK3&bgr; showed phosphorylation on Ser133. In addition, GSK3&bgr; phosphorylated Ser304, although the degree of phosphorylation was less compared with protein kinase A–induced phosphorylation at Ser304. GSK3&bgr; treatment of single membrane–permeabilized human cardiomyocytes significantly enhanced the maximal rate of tension redevelopment. Conclusions: GSK3&bgr; phosphorylates cMyBP-C on a novel site, which is positioned in the proline-alanine–rich region and increases kinetics of force development, suggesting a noncanonical role for GSK3&bgr; at the sarcomere level. Phosphorylation of Ser133 in the linker domain of cMyBP-C may be a novel mechanism to regulate sarcomere kinetics.


PLOS ONE | 2013

PKCα-specific phosphorylation of the troponin complex in human myocardium: a functional and proteomics analysis.

Viola Kooij; Pingbo Zhang; Sander R. Piersma; Vasco Sequeira; Nicky M. Boontje; Paul J.M. Wijnker; Connie R. Jimenez; Kornelia Jaquet; Cristobal G. dos Remedios; Anne M. Murphy; Jennifer E. Van Eyk; Jolanda van der Velden; Ger J.M. Stienen

Aims Protein kinase Cα (PKCα) is one of the predominant PKC isoforms that phosphorylate cardiac troponin. PKCα is implicated in heart failure and serves as a potential therapeutic target, however, the exact consequences for contractile function in human myocardium are unclear. This study aimed to investigate the effects of PKCα phosphorylation of cardiac troponin (cTn) on myofilament function in human failing cardiomyocytes and to resolve the potential targets involved. Methods and Results Endogenous cTn from permeabilized cardiomyocytes from patients with end-stage idiopathic dilated cardiomyopathy was exchanged (∼69%) with PKCα-treated recombinant human cTn (cTn (DD+PKCα)). This complex has Ser23/24 on cTnI mutated into aspartic acids (D) to rule out in vitro cross-phosphorylation of the PKA sites by PKCα. Isometric force was measured at various [Ca2+] after exchange. The maximal force (Fmax) in the cTn (DD+PKCα) group (17.1±1.9 kN/m2) was significantly reduced compared to the cTn (DD) group (26.1±1.9 kN/m2). Exchange of endogenous cTn with cTn (DD+PKCα) increased Ca2+-sensitivity of force (pCa50u200a=u200a5.59±0.02) compared to cTn (DD) (pCa50u200a=u200a5.51±0.02). In contrast, subsequent PKCα treatment of the cells exchanged with cTn (DD+PKCα) reduced pCa50 to 5.45±0.02. Two PKCα-phosphorylated residues were identified with mass spectrometry: Ser198 on cTnI and Ser179 on cTnT, although phosphorylation of Ser198 is very low. Using mass spectrometry based-multiple reaction monitoring, the extent of phosphorylation of the cTnI sites was quantified before and after treatment with PKCα and showed the highest phosphorylation increase on Thr143. Conclusion PKCα-mediated phosphorylation of the cTn complex decreases Fmax and increases myofilament Ca2+-sensitivity, while subsequent treatment with PKCα in situ decreased myofilament Ca2+-sensitivity. The known PKC sites as well as two sites which have not been previously linked to PKCα are phosphorylated in human cTn complex treated with PKCα with a high degree of specificity for Thr143.


PLOS ONE | 2012

Triggering of the dsRNA Sensors TLR3, MDA5, and RIG-I Induces CD55 Expression in Synovial Fibroblasts

Olga N. Karpus; Kirstin M. Heutinck; Paul J.M. Wijnker; Paul P. Tak; Jörg Hamann

Background CD55 (decay-accelerating factor) is a complement-regulatory protein highly expressed on fibroblast-like synoviocytes (FLS). CD55 is also a ligand for CD97, an adhesion-type G protein-coupled receptor abundantly present on leukocytes. Little is known regarding the regulation of CD55 expression in FLS. Methods FLS isolated from arthritis patients were stimulated with pro-inflammatory cytokines and Toll-like receptor (TLR) ligands. Transfection with polyinosinic-polycytidylic acid (poly(I:C)) and 5′-triphosphate RNA were used to activate the cytoplasmic double-stranded (ds)RNA sensors melanoma differentiation-associated gene 5 (MDA5) and retinoic acid-inducible gene-I (RIG-I). CD55 expression, cell viability, and binding of CD97-loaded beads were quantified by flow cytometry. Results CD55 was expressed at equal levels on FLS isolated from patients with rheumatoid arthritis (RA), osteoarthritis, psoriatic arthritis and spondyloarthritis. CD55 expression in RA FLS was significantly induced by IL-1β and especially by the TLR3 ligand poly(I:C). Activation of MDA5 and RIG-I also enhanced CD55 expression. Notably, activation of MDA5 dose-dependently induced cell death, while triggering of TLR3 or RIG-I had a minor effect on viability. Upregulation of CD55 enhanced the binding capacity of FLS to CD97-loaded beads, which could be blocked by antibodies against CD55. Conclusions Activation of dsRNA sensors enhances the expression of CD55 in cultured FLS, which increases the binding to CD97. Our findings suggest that dsRNA promotes the interaction between FLS and CD97-expressing leukocytes.


Cellular Physiology and Biochemistry | 2011

NOX2, p22phox and p47phox are targeted to the nuclear pore complex in ischemic cardiomyocytes colocalizing with local reactive oxygen species

Nynke E. Hahn; Christof Meischl; Paul J.M. Wijnker; René J. P. Musters; Maarten Fornerod; Hans W.R.M. Janssen; Walter J. Paulus; Albert C. van Rossum; Hans W.M. Niessen; Paul A.J. Krijnen

Background: NADPH oxidases play an essential role in reactive oxygen species (ROS)-based signaling in the heart. Previously, we have demonstrated that (peri)nuclear expression of the catalytic NADPH oxidase subunit NOX2 in stressed cardiomyocytes, e.g. under ischemia or high concentrations of homocysteine, is an important step in the induction of apoptosis in these cells. Here this ischemia-induced nuclear targeting and activation of NOX2 was specified in cardiomyocytes. Methods: The effect of ischemia, mimicked by metabolic inhibition, on nuclear localization of NOX2 and the NADPH oxidase subunits p22phox and p47phox, was analyzed in rat neonatal cardiomyoblasts (H9c2 cells) using Western blot, immuno-electron microscopy and digital-imaging microscopy. Results: NOX2 expression significantly increased in nuclear fractions of ischemic H9c2 cells. In addition, in these cells NOX2 was found to colocalize in the nuclear envelope with nuclear pore complexes, p22phox, p47phox and nitrotyrosine residues, a marker for the generation of ROS. Inhibition of NADPH oxidase activity, with apocynin and DPI, significantly reduced (peri)nuclear expression of nitrotyrosine. Conclusion: We for the first time show that NOX2, p22phox and p47phox are targeted to and produce ROS at the nuclear pore complex in ischemic cardiomyocytes.

Collaboration


Dive into the Paul J.M. Wijnker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ger J.M. Stienen

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Vasco Sequeira

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anne M. Murphy

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Brian Foster

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Aref Najafi

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicky M. Boontje

VU University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge