Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Maccabee is active.

Publication


Featured researches published by Paul J. Maccabee.


Electroencephalography and Clinical Neurophysiology | 1989

Suppression of visual perception by magnetic coil stimulation of human occipital cortex

Vahe E. Amassian; Roger Q. Cracco; Paul J. Maccabee; Joan B. Cracco; Alan P. Rudell; Larry Eberle

Magnetic coil (MC) stimulation percutaneously of human occipital cortex was tested on perception of 3 briefly presented, randomly generated alphabetical characters. When the visual stimulus-MC pulse interval was less than 40-60 msec, or more than 120-140 msec, letters were correctly reported; at test intervals of 80-100 msec, a blur or nothing was seen. Shifting the MC location in the transverse and rostro-caudal axes had effects consistent with the topographical representation in visual cortex, but incompatible with an effect on attention or suppression from an eyeblink. The MC pulse probably acts by eliciting IPSPs in visual cortex. The neural activity subserving letter recognition is probably transmitted from visual cortex within 140 msec of the visual stimulus.


The Journal of Physiology | 1993

Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation.

Paul J. Maccabee; Vahe E. Amassian; L. Eberle; Roger Q. Cracco

1. According to classical cable theory, a magnetic coil (MC) should excite a linear nerve fibre in a homogeneous medium at the negative‐going first spatial derivative of the induced electric field. This prediction was tested by MC stimulation of mammalian phrenic and amphibian sciatic nerve and branches in vitro, immersed in Ringer solution within a trough, and identifying the sites of excitation by recording responses of similar latency to local electrical stimulation. Subsequently, the identified sites of excitation were compared with measurements of the induced electric field and its calculated first spatial derivative. A special hardware device was used to selectively reverse MC current direction and to generate predominantly monophasic‐ or polyphasic‐induced pulse profiles whose initial phases were identical in polarity, shape and amplitude. When using the amphibian nerve preparation, a complication was excitation at low threshold points related to cut branches. 2. Reversal of monophasic current resulted in latency shifts corresponding approximately to the distance between induced cathode and anode. The location of each site of excitation was at, or very near, the negative‐going first spatial derivative peaks of the induced electric field measured parallel to the straight nerve. Significantly, excitation of the nerve did not occur at the peak of the induced electric field above the centre of the ‘figure of eight’ MC junction. 3. A polyphasic pulse excited the nerve at both sites, by the negative‐going first phase at one location, and approximately 150 microseconds later, by the reversed negative‐going second phase at the other location. Polyphasic and monophasic pulses elicited responses with similar latency when the induced current flowed towards the recording electrode. 4. Straddling a nerve with non‐coding solid lucite cylinders created a localized spatial narrowing and increase in the induced electric field, resulting in a lowered threshold of excitation. The corresponding closer spacing between first spatial derivative peaks was exhibited by a significant reduction in latency shift when MC current direction was reversed. 5. When a nerve is bent and the induced current is directed along the nerve towards the bend, the threshold of excitation is reduced there. Increasing the angle of the bend from 0 deg to more than 90 deg graded the decrease in threshold. 6. In a straight nerve the threshold was lowest when current was directed towards the cut end.(ABSTRACT TRUNCATED AT 400 WORDS)


Electroencephalography and Clinical Neurophysiology | 1992

Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: the significance of fiber bending in excitation

Vahe E. Amassian; Larry Eberle; Paul J. Maccabee; Roger Q. Cracco

To help elucidate some basic principles of magnetic coil (MC) excitation of cerebral cortex, a model system was devised in which mammalian phrenic nerve, or amphibian sciatic nerve with its branches was suspended in appropriate Ringers solution in a human brain-shaped volume conductor, an inverted plastic skull. The nerve was recorded monophasically out of the volume conductor. The site of nerve excitation by the MC was identified by finding where along the nerve a bipolar electrical stimulus yielded a similar action potential latency. MC excitation of hand-related corticospinal (CT) neurons was modelled by giving the distal end of nerve attached to the lateral skull an initial radial (perpendicular) trajectory, with subsequent bends towards the base and posterior part of the skull; this nerve was optimally excited by a laterally placed figure 8 or round MC when the induced electric field led to outward membrane current at the initial bend. By contrast, nerve given a trajectory modelling CT neurons related to the foot was optimally excited when the coil windings were across the midline, but again when membrane current flowed outward at the first bend. Corticocortical fibers were modelled by placing the nerve in the anteroposterior axis lateral to the midline; with the round MC vertex-tangentially orientated, optimal excitation occurred at the bend nearest the interaural line, i.e., near the peak electric field. The findings emphasize the importance of orientation and direction of current in the MC and fiber bends in determining nerve excitation. The findings in the peripheral nerve-skull model help explain (1) why lateral and vertex-tangentially orientated MCs preferentially excite arm-related CT neurons directly and indirectly (through corticocortical fibers), respectively, and (2) why the MC orientations for optimally exciting directly arm and leg-related CT neurons differ.


Electroencephalography and Clinical Neurophysiology | 1989

Focal stimulation of human cerebral cortex with the magnetic coil : a comparison with electrical stimulation

Vahe E. Amassian; Roger Q. Cracco; Paul J. Maccabee

Percutaneous stimulation of human motor cortex electrically (focal anode) and with magnetic coils (MCs) of various designs is compared. The theoretical prediction was confirmed that positioning the standard round MC laterally and orientating it more towards the vertical induces an electric field appropriate for directly exciting corticospinal neurons (cf., the conventional tangential orientation at the vertex). Thus, during voluntary contraction, minimal latency compound motor action potentials (CMAPs) in contralateral arm were elicited both by focal anodic and appropriately orientated MC stimulation. Conduction time from motor cortex to motoneuron was estimated by subtracting peripheral conduction time and monosynaptic delay at the motoneuron from the overall CMAP latency, yielding an estimated corticospinal conduction velocity as high as 66 m/sec. Discontinuous latency variations observed in population CMAPs or individual motor units approximated mono- or polysynaptic cortical synaptic delays and, therefore, are attributed to the intervals between direct and early, or late indirect corticospinal discharges. A TV computer system was used to track movements of individual digits and the hand following MC stimulation. An appropriately orientated MC readily elicited movements predominantly of a single digit, implying focal activation of motor cortex. A double square and a small pointed MC proved especially convenient for eliciting reproducibly single digit movements. Stronger stimulation revealed a topographical gradient in the responses of the different digits. Responses to a given MC stimulus a little above threshold were variable in amplitude, which could not be explained by the relationship of stimulus to phase of the cardiac or respiratory cycle. Overall, our findings indicate the importance of appropriately orientating a standard round MC and using a specially designed MC to obtain the various types of motor response to stimulation of cerebral cortex.


Electroencephalography and Clinical Neurophysiology | 1989

Comparison of human transcallosal responses evoked by magnetic coil and electrical stimulation

Roger Q. Cracco; Vahe E. Amassian; Paul J. Maccabee; Joan B. Cracco

Human transcallosal responses (TCRs) were elicited by focal magnetic coil (MC) stimulation of homologous sites in contralateral frontal cortex and compared with those to focal anodic stimulation. With MC stimulation, the TCR consisted of an initially positive wave with an onset latency of 8.8-12.2 msec, a duration of 7-15 msec, and an amplitude which reached up to 20 microV, sometimes followed by a broad low amplitude negative wave. With anodic stimulation, a similar response was obtained in which the positive wave was similar in latency and maximum amplitude, but had a greater duration. With anodic stimulation, not only was the TCR threshold below that for contralateral movement, but it reached substantial size at intensities below motor threshold. With MC stimulation, contralateral arm movement and scalp corticomotor potentials were observed when the MC was displaced posteriorly towards the central sulcus. Unlike with anodic stimulation, the MC evoked TCR was usually not preceded by a prominent EMG potential from temporalis muscle and was not associated with subject discomfort. The TCR provides unique information concerning the functional integrity of callosal projection neurons, their axons and transsynaptic processes in recipient cortex. This information may prove useful in the evaluation of intrinsic cerebral mechanisms and in establishing cortical viability.


Journal of Clinical Neurophysiology | 1998

TRANSCRANIAL MAGNETIC STIMULATION IN STUDY OF THE VISUAL PATHWAY

Vahe E. Amassian; Roger Q. Cracco; Paul J. Maccabee; Joan B. Cracco; Alan P. Rudell; Larry Eberle

The authors critically reviewed experiments in which transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS) of the higher visual pathway were used. Topics include basic mechanisms of neural excitation by TMS and their relevance to the visual pathway (excitatory and inhibitory effects), TMS and rTMS of calcarine cortex (suppression, unmasking, and phosphenes), TMS of V5 (suppression), TMS and rTMS of higher level temporoparietooccipital areas (perceptual errors, unmasking, and inattention), the role of frontal lobe output in visual perception, and vocalization of perceived visual stimuli (role of consciousness of linguistic symbols).


The Journal of Physiology | 1998

Influence of pulse sequence, polarity and amplitude on magnetic stimulation of human and porcine peripheral nerve

Paul J. Maccabee; Srikantan S. Nagarajan; Vahe E. Amassian; Dominique M. Durand; András Szabó; Abdul Ahad; Roger Q. Cracco; Kon S. Lai; L. Eberle

1 Mammalian phrenic nerve, in a trough filled with saline, was excited by magnetic coil (MC)‐induced stimuli at defined stimulation sites, including the negative‐going first spatial derivative of the induced electric field along a straight nerve, at a bend in the nerve, and at a cut nerve ending. At all such sites, the largest amplitude response for a given stimulator output setting was elicited by an induced damped polyphasic pulse consisting of an initial quarter‐cycle hyperpolarization followed by a half‐cycle depolarization compared with a predominantly ‘monophasic’ quarter‐cycle depolarization. 2 Simulation studies demonstrated that the increased efficacy of the induced quarter‐cycle hyperpolarizing‐half‐cycle depolarizing polyphasic pulse was mainly attributed to the greater duration of the outward membrane current phase, resulting in a greater outward charge transfer afforded by the half‐cycle (i.e. quarter‐cycles 2 and 3). The advantage of a fast rising initial quarter‐cycle depolarization was more than offset by the slower rising, but longer duration depolarizing half‐cycle. 3 Simulation further revealed that the quarter‐cycle hyperpolarization‐half‐cycle depolarization showed only a 2.6 % lowering of peak outward current and a 3.5 % lowering of outward charge transfer at threshold, compared with a half‐cycle depolarization alone. Presumably, this slight increase in efficacy reflects modest reversal of Na+ inactivation by the very brief initial hyperpolarization. 4 In vitro, at low bath temperature, the nerve response to an initial quarter‐cycle depolarization declined in amplitude as the second hyperpolarizing phase progressively increased in amplitude and duration. This ‘pull‐down’ phenomenon nearly disappeared as the bath temperature approached 37 °C. Possibly, at the reduced temperature, delay in generation of the action potential permitted the hyperpolarization phase to reduce excitation. 5 Pull‐down was not observed in the thenar muscle responses to median nerve stimulation in a normal human at normal temperature. However, pull‐down emerged when the median nerve was cooled by placing ice over the forearm. 6 In a nerve at subnormal temperature straddled with non‐conducting inhomogeneities, polyphasic pulses of either polarity elicited the largest responses. This was also seen when stimulating distal median nerve at normal temperature. These results imply excitation by hyperpolarizing‐depolarizing pulse sequences at two separate sites. Similarly, polyphasic pulses elicited the largest responses from nerve roots and motor cortex. 7 The pull‐down phenomenon has a possible clinical application in detecting pathologically slowed activation of Na+ channels. The current direction of the polyphasic waveform may become a significant factor with the increasing use of repetitive magnetic stimulators which, for technical reasons, induce a cosine‐shaped half‐cycle, preceded and followed by quarter‐cycles of opposite polarity.


Electroencephalography and Clinical Neurophysiology | 1990

Spatial distribution of the electric field induced in volume by round and figure '8' magnetic coils: relevance to activation of sensory nerve fibers

Paul J. Maccabee; L. Eberle; V.E. Amassian; Roger Q. Cracco; Alan P. Rudell

The electric fields induced in finite homogeneous volume conductors by a round and a figure 8 magnetic coil (MC) were measured and related to MC stimulation of the median nerve. The volume conductors, filled with isotonic saline, consisted of a large rectangular trough (unrestricted) and a smaller trough, whose dimensions approximated human forearm (restricted). Various MC orientations were applied to the volume conductor. Bipolar recordings were obtained with a coaxial electrode, which measured the voltage gradient between the exposed edge of the cable shield and the central wire at its tip, 1 cm distant (a linear probe). The probe was moved in 3 dimensions, allowing computer reconstruction of the electric field as a function of the 3 spatial axes. When the probe was parallel to the plane of the round MC and tangential to the direction of current in its windings, the induced electric field was maximal; it tended towards zero when the probe was over the center of the MC, or when the probe, remaining parallel to the plane of the MC, was radial (i.e., perpendicular) to the direction of the current in the windings. For a variety of MC orientations, the electric field was consistently increased when the probe was adjacent and parallel to the edge of the trough, indicating the important effect of boundaries. The electric field was greatly increased focally when the round MC was applied orthogonally to the volume conductor, or when the figure 8 MC was applied tangentially (i.e., flat) to the volume conductor. With the figure 8 MC, a sharp central peak parallel to the long axis was bounded on each side by smaller (less than half amplitude) peaks. The findings from physical modeling led to correct predictions as to the most effective orientations of round and figure 8 MCs for eliciting sensory nerve action potentials (SNAPs) from the median nerve.


Brain Research | 1993

Unmasking human visual perception with the magnetic coil and its relationship to hemispheric asymmetry

Vahe E. Amassian; Roger Q. Cracco; Paul J. Maccabee; Joan B. Cracco; Alan P. Rudell; Larry Eberle

Visual suppression by a magnetic coil (MC) pulse delivered over human calcarine cortex after a transient visual stimulus 80-100 ms earlier has been used to suppress the representation of a masking visual stimulus and thus to unmask a target visual stimulus given, e.g., 100 ms before the mask. The resulting target unmasking as a function of the interval between mask and MC pulse is approximately the inverse of the visual suppression curve. Arbitrary visual linear patterns can similarly be unmasked. At the long target-mask interval used, the site of masking is deduced to lie beyond calcarine cortex. In several right-handed subjects tested, powerful MC stimulation of the left (but not right) temporo-parieto-occipital cortex also led to (weaker) unmasking.


Brain Research | 1993

Measurement of information processing delays in human visual cortex with repetitive magnetic coil stimulation.

Vahe E. Amassian; Paul J. Maccabee; Roger Q. Cracco; Joan B. Cracco; Alan P. Rudell; Larry Eberle

Previous work disclosed that single magnetic coil (MC) pulses applied over human calcarine cortex could suppress perception of letters briefly presented, e.g. 80-100 ms earlier. Although individual MC stimuli presented 0-60 ms, or more than 140 ms after the visual stimulus were apparently ineffective, combinations of 2 or 3 MC pulses at such intervals temporarily depressed visual perception. Thus, progressing of such language information could be slowed, without being abolished. By contrast, when the first MC pulse was delivered 120 ms or later, a second MC pulse 40 ms later had no detectable effect, implying that calcarine cortex had already transmitted the information. Perceptual recovery of 5-character words initially occurred no earlier than that of random letters, nor or random letters vs. arbitrary linear patterns, implying that the processing delays in calcarine cortex were similar.

Collaboration


Dive into the Paul J. Maccabee's collaboration.

Top Co-Authors

Avatar

Roger Q. Cracco

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Vahe E. Amassian

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Joan B. Cracco

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Alan P. Rudell

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Larry Eberle

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

L. Eberle

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

V.E. Amassian

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

J.A. Willer

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

M.E. Lipitz

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

R.W. Golub

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge