Paul J. McLaren
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul J. McLaren.
Nature Genetics | 2012
Adam Kiezun; Kiran Garimella; Ron Do; Nathan O. Stitziel; Benjamin M. Neale; Paul J. McLaren; Namrata Gupta; Pamela Sklar; Patrick F. Sullivan; Jennifer L. Moran; Christina M. Hultman; Paul Lichtenstein; Patrik K. E. Magnusson; Thomas Lehner; Yin Yao Shugart; Alkes L. Price; Paul I. W. de Bakker; Shaun Purcell; Shamil R. Sunyaev
Shamil Sunyaev and colleagues present exome sequencing methods and their applications in studies to identify the genetic basis of human complex traits. They include analyses of the whole-exome sequences of 438 individuals from across several studies.
Science | 2013
Richard Apps; Ying Qi; Jonathan M. Carlson; Haoyan Chen; Xiaojiang Gao; Rasmi Thomas; Yuko Yuki; Greg Q. Del Prete; Philip J. R. Goulder; Zabrina L. Brumme; Chanson J. Brumme; M. John; S. Mallal; George W. Nelson; Ronald J. Bosch; David Heckerman; Judy L. Stein; Kelly A. Soderberg; M. Anthony Moody; Thomas N. Denny; Xue Zeng; Jingyuan Fang; Ashley Moffett; Jeffrey D. Lifson; James J. Goedert; Susan Buchbinder; Gregory D. Kirk; Jacques Fellay; Paul J. McLaren; Steven G. Deeks
Thwarting HIV Multiple genome-wide association studies have revealed that human leukocyte antigen (HLA) genes of the major histocompatibility complex locus have the strongest impact on HIV. In particular, a single-nucleotide polymorphism 35 base pairs upstream of HLA-C shows significant association with viral load and protection against HIV. How HLA-C mediates these effects is unknown. Apps et al. (p. 87) now demonstrate that increasing surface expression of HLA-C is associated with reduced viral load and reduced rate of progression to low CD4+ T cell counts in African and European Americans. High HLA-C expression likely promoted improved HIV control through a more effective cytotoxic CD8+ T cell response. In contrast to HIV infection, high HLA-C expression was associated with a higher risk of the inflammatory bowel disease, Crohns disease. Increased levels of human leukocyte antigen C are associated with control of HIV infection but increased susceptibility to Crohn’s disease. A variant upstream of human leukocyte antigen C (HLA-C) shows the most significant genome-wide effect on HIV control in European Americans and is also associated with the level of HLA-C expression. We characterized the differential cell surface expression levels of all common HLA-C allotypes and tested directly for effects of HLA-C expression on outcomes of HIV infection in 5243 individuals. Increasing HLA-C expression was associated with protection against multiple outcomes independently of individual HLA allelic effects in both African and European Americans, regardless of their distinct HLA-C frequencies and linkage relationships with HLA-B and HLA-A. Higher HLA-C expression was correlated with increased likelihood of cytotoxic T lymphocyte responses and frequency of viral escape mutation. In contrast, high HLA-C expression had a deleterious effect in Crohn’s disease, suggesting a broader influence of HLA expression levels in human disease.
The Journal of Infectious Diseases | 2009
Catherine M. Card; Paul J. McLaren; Charles Wachihi; Joshua Kimani; Francis A. Plummer; Keith R. Fowke
Human immunodeficiency virus (HIV)-resistant commercial sex workers provide a unique opportunity to study correlates of protection associated with natural resistance to HIV infection. Emerging data from studies of these individuals and other uninfected individuals who have been exposed to HIV suggest that low levels of immune activation may contribute to protection against infection. In the present study, HIV-resistant individuals were shown to have reduced frequencies of T cells expressing the activation marker CD69. They were also found to have elevated frequencies of regulatory T (T(reg)) cells, compared with HIV-negative control individuals. By controlling levels of T cell activation, T(reg) cells may contribute to HIV resistance by minimizing the pool of cells susceptible to infection.
Journal of Clinical Investigation | 2011
Margalida Rotger; Judith Dalmau; Andri Rauch; Paul J. McLaren; Steven E. Bosinger; Raquel Martinez; Netanya G. Sandler; Annelys Roque; Julia Liebner; Manuel Battegay; Enos Bernasconi; Patrick Descombes; Itziar Erkizia; Jacques Fellay; Bernard Hirschel; José M. Miró; Eduard Palou; Matthias Hoffmann; Marta Massanella; Julià Blanco; Matthew Woods; Huldrych F. Günthard; Paul I. W. de Bakker; Guido Silvestri; Javier Martinez-Picado; Amalio Telenti
High levels of HIV-1 replication during the chronic phase of infection usually correlate with rapid progression to severe immunodeficiency. However, a minority of highly viremic individuals remains asymptomatic and maintains high CD4⁺ T cell counts. This tolerant profile is poorly understood and reminiscent of the widely studied nonprogressive disease model of SIV infection in natural hosts. Here, we identify transcriptome differences between rapid progressors (RPs) and viremic nonprogressors (VNPs) and highlight several genes relevant for the understanding of HIV-1-induced immunosuppression. RPs were characterized by a specific transcriptome profile of CD4⁺ and CD8⁺ T cells similar to that observed in pathogenic SIV-infected rhesus macaques. In contrast, VNPs exhibited lower expression of interferon-stimulated genes and shared a common gene regulation profile with nonpathogenic SIV-infected sooty mangabeys. A short list of genes associated with VNP, including CASP1, CD38, LAG3, TNFSF13B, SOCS1, and EEF1D, showed significant correlation with time to disease progression when evaluated in an independent set of CD4⁺ T cell expression data. This work characterizes 2 minimally studied clinical patterns of progression to AIDS, whose analysis may inform our understanding of HIV pathogenesis.
Nature Genetics | 2012
Bogdan Pasaniuc; Nadin Rohland; Paul J. McLaren; Kiran Garimella; Noah Zaitlen; Heng Li; Namrata Gupta; Benjamin M. Neale; Mark J. Daly; Pamela Sklar; Patrick F. Sullivan; Sarah E. Bergen; Jennifer L. Moran; Christina M. Hultman; Paul Lichtenstein; Patrik K. E. Magnusson; Shaun Purcell; David W. Haas; Liming Liang; Shamil R. Sunyaev; Nick Patterson; Paul I. W. de Bakker; David Reich; Alkes L. Price
Genome-wide association studies (GWAS) have proven to be a powerful method to identify common genetic variants contributing to susceptibility to common diseases. Here, we show that extremely low-coverage sequencing (0.1–0.5×) captures almost as much of the common (>5%) and low-frequency (1–5%) variation across the genome as SNP arrays. As an empirical demonstration, we show that genome-wide SNP genotypes can be inferred at a mean r2 of 0.71 using off-target data (0.24× average coverage) in a whole-exome study of 909 samples. Using both simulated and real exome-sequencing data sets, we show that association statistics obtained using extremely low-coverage sequencing data attain similar P values at known associated variants as data from genotyping arrays, without an excess of false positives. Within the context of reductions in sample preparation and sequencing costs, funds invested in extremely low-coverage sequencing can yield several times the effective sample size of GWAS based on SNP array data and a commensurate increase in statistical power.
PLOS Genetics | 2012
Shengping Li; Ji Qian; Yuan Yang; Wanting Zhao; Juncheng Dai; Jin Xin Bei; Jia Nee Foo; Paul J. McLaren; Zhiqiang Li; Yang J; Feng Shen; Li Liu; Jiamei Yang; Shuhong Li; Shandong Pan; Yi Wang; Wenjin Li; Xiangjun Zhai; Boping Zhou; Lehua Shi; Xinchun Chen; Minjie Chu; Yi-Qun Yan; Jun Wang; Shuqun Cheng; Jiawei Shen; Weihua Jia; Jibin Liu; Jiahe Yang; Zujia Wen
Genome-wide association studies (GWAS) have recently identified KIF1B as susceptibility locus for hepatitis B virus (HBV)–related hepatocellular carcinoma (HCC). To further identify novel susceptibility loci associated with HBV–related HCC and replicate the previously reported association, we performed a large three-stage GWAS in the Han Chinese population. 523,663 autosomal SNPs in 1,538 HBV–positive HCC patients and 1,465 chronic HBV carriers were genotyped for the discovery stage. Top candidate SNPs were genotyped in the initial validation samples of 2,112 HBV–positive HCC cases and 2,208 HBV carriers and then in the second validation samples of 1,021 cases and 1,491 HBV carriers. We discovered two novel associations at rs9272105 (HLA-DQA1/DRB1) on 6p21.32 (OR = 1.30, P = 1.13×10−19) and rs455804 (GRIK1) on 21q21.3 (OR = 0.84, P = 1.86×10−8), which were further replicated in the fourth independent sample of 1,298 cases and 1,026 controls (rs9272105: OR = 1.25, P = 1.71×10−4; rs455804: OR = 0.84, P = 6.92×10−3). We also revealed the associations of HLA-DRB1*0405 and 0901*0602, which could partially account for the association at rs9272105. The association at rs455804 implicates GRIK1 as a novel susceptibility gene for HBV–related HCC, suggesting the involvement of glutamate signaling in the development of HBV–related HCC.
Pharmacogenetics and Genomics | 2012
Emily Rose Holzinger; Benjamin J. Grady; Marylyn D. Ritchie; Heather J. Ribaudo; Edward P. Acosta; Gene D. Morse; Roy M. Gulick; Gregory K. Robbins; David B. Clifford; Eric S. Daar; Paul J. McLaren; David W. Haas
Objectives Prior candidate gene studies have associated CYP2B6 516G→T [rs3745274] and 983T→C [rs28399499] with increased plasma efavirenz exposure. We sought to identify novel variants associated with efavirenz pharmacokinetics. Materials and methods Antiretroviral therapy-naive AIDS Clinical Trials Group studies A5202, A5095, and ACTG 384 included plasma sampling for efavirenz pharmacokinetics. Log-transformed trough efavirenz concentrations (Cmin) were previously estimated by population pharmacokinetic modeling. Stored DNA was genotyped with Illumina HumanHap 650Y or 1MDuo platforms, complemented by additional targeted genotyping of CYP2B6 and CYP2A6 with MassARRAY iPLEX Gold. Associations were identified by linear regression, which included principal component vectors to adjust for genetic ancestry. Results Among 856 individuals, CYP2B6 516G→T was associated with efavirenz estimated Cmin (P=8.5×10−41). After adjusting for CYP2B6 516G→T, CYP2B6 983T→C was associated (P=9.9×10−11). After adjusting for both CYP2B6 516G→T and 983T→C, a CYP2B6 variant (rs4803419) in intron 3 was associated (P=4.4×10−15). After adjusting for all the three variants, non-CYP2B6 polymorphisms were associated at P-value less than 5×10−8. In a separate cohort of 240 individuals, only the three CYP2B6 polymorphisms replicated. These three polymorphisms explained 34% of interindividual variability in efavirenz estimated Cmin. The extensive metabolizer phenotype was best defined by the absence of all three polymorphisms. Conclusion Three CYP2B6 polymorphisms were independently associated with efavirenz estimated Cmin at genome-wide significance, and explained one-third of interindividual variability. These data will inform continued efforts to translate pharmacogenomic knowledge into optimal efavirenz utilization.
AIDS | 2007
Terry B. Ball; Hezhao Ji; Joshua Kimani; Paul J. McLaren; Crystal Marlin; Adrian V. S. Hill; Francis A. Plummer
Objective:To determine the correlation between polymorphisms in the IL-4 gene cluster and resistance to HIV-1 infection. Design:A cross-sectional genetic analysis of polymorphisms within the IL-4 gene cluster was conducted in a well-described female sex worker cohort from Nairobi, Kenya, known to exhibit differential susceptibility to HIV-1 infection. Methods:Microsatellite genotyping was used to screen six microsatellite markers in the IL-4 gene cluster for associations with HIV-1 resistance. Further analysis of the interferon regulatory factor 1 (IRF-1) gene was conducted by genomic sequencing. Associations between IRF-1 gene polymorphisms and the HIV-1 resistance phenotype were determined using the chi-square test and Kaplan–Meier survival analysis. The functional consequence of IRF-1 polymorphism was conducted by quantitative Western blot. Results:Three polymorphisms in IRF-1, located at 619, the microsatellite region and 6516 of the gene, showed associations with resistance to HIV-1 infection. The 619A, 179 at IRF-1 microsatellite and 6516G alleles were associated with the HIV-1-resistant phenotype and a reduced likelihood of seroconversion. Peripheral blood mononuclear cells from patients with protective IRF-1 genotypes exhibited significantly lower basal IRF-1 expression and reduced responsiveness to exogenous IFN-γ stimulation. Conclusion:Polymorphisms in the IRF-1 gene are associated with resistance to infection by HIV-1 and a lowered level of IRF-1 protein expression. This study adds IRF-1, a transcriptional immunoregulatory gene, to the list of genetic correlates of altered susceptibility to HIV-1. This is the first report suggesting that a viral transcriptional regulator might contribute to resistance to HIV-1. Further functional analysis on the role of IRF-1 polymorphisms and HIV-1 resistance is underway.
eLife | 2013
István Bartha; Jonathan M. Carlson; Chanson J. Brumme; Paul J. McLaren; Zabrina L. Brumme; M. John; David W. Haas; Javier Martinez-Picado; Judith Dalmau; Cecilio López-Galíndez; Concepción Casado; Andri Rauch; Huldrych F. Günthard; Enos Bernasconi; Pietro Vernazza; Thomas Klimkait; Sabine Yerly; Stephen J. O’Brien; Jennifer Listgarten; Nico Pfeifer; Christoph Lippert; Nicolo Fusi; Zoltán Kutalik; Todd M. Allen; Viktor Müller; P. Richard Harrigan; David Heckerman; Amalio Telenti; Jacques Fellay
HIV-1 sequence diversity is affected by selection pressures arising from host genomic factors. Using paired human and viral data from 1071 individuals, we ran >3000 genome-wide scans, testing for associations between host DNA polymorphisms, HIV-1 sequence variation and plasma viral load (VL), while considering human and viral population structure. We observed significant human SNP associations to a total of 48 HIV-1 amino acid variants (p<2.4 × 10−12). All associated SNPs mapped to the HLA class I region. Clinical relevance of host and pathogen variation was assessed using VL results. We identified two critical advantages to the use of viral variation for identifying host factors: (1) association signals are much stronger for HIV-1 sequence variants than VL, reflecting the ‘intermediate phenotype’ nature of viral variation; (2) association testing can be run without any clinical data. The proposed genome-to-genome approach highlights sites of genomic conflict and is a strategy generally applicable to studies of host–pathogen interaction. DOI: http://dx.doi.org/10.7554/eLife.01123.001
PLOS Pathogens | 2013
Paul J. McLaren; Cédric Coulonges; Stephan Ripke; Leonard H. van den Berg; Susan Buchbinder; Mary Carrington; Andrea Cossarizza; Judith Dalmau; Steven G. Deeks; Olivier Delaneau; Andrea De Luca; James J. Goedert; David W. Haas; Joshua T. Herbeck; Sekar Kathiresan; Gregory D. Kirk; Olivier Lambotte; Ma Luo; S. Mallal; Daniëlle van Manen; Javier Martinez-Picado; Laurence Meyer; José M. Miró; James I. Mullins; Niels Obel; Stephen J. O'Brien; Florencia Pereyra; Francis A. Plummer; Guido Poli; Ying Qi
Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10−11). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.