Paul J. Tesar
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul J. Tesar.
Nature | 2007
Paul J. Tesar; Josh G. Chenoweth; Frances A. Brook; Timothy J. Davies; E. P. Evans; David L. Mack; Richard L. Gardner; Ronald D. G. McKay
The application of human embryonic stem (ES) cells in medicine and biology has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus. Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. These cells, which we refer to as EpiSCs (post-implantation epiblast-derived stem cells), express transcription factors known to regulate pluripotency, maintain their genomic integrity, and robustly differentiate into the major somatic cell types as well as primordial germ cells. The EpiSC lines are distinct from mouse ES cells in their epigenetic state and the signals controlling their differentiation. Furthermore, EpiSC and human ES cells share patterns of gene expression and signalling responses that normally function in the epiblast. These results show that epiblast cells can be maintained as stable cell lines and interrogated to understand how pluripotent cells generate distinct fates during early development.
Genome Research | 2011
Gabriel E. Zentner; Paul J. Tesar; Peter C. Scacheri
Epigenetic regulation of gene enhancer elements is important for establishing and maintaining the identity of cells. Gene enhancer elements are thought to exist in either active or poised states distinguishable by chromatin features, but a complete understanding of the regulation of enhancers is lacking. Here, by using mouse embryonic stem cells and their differentiated derivatives, as well as terminally differentiated cells, we report the coexistence of multiple, defined classes of enhancers that serve distinct cellular functions. Specifically, we found that active enhancers can be subclassified based on varying levels of H3K4me1, H3K27ac, and H3K36me3 and the pSer2/5 forms of RNA polymerase II. The abundance of these histone modifications positively correlates with the expression of associated genes and cellular functions consistent with the identity of the cell type. Poised enhancers can also be subclassified based on presence or absence of H3K27me3 and H3K9me3, conservation, genomic location, expression levels of associated genes, and predicted function of associated genes. These findings not only refine the repertoire of histone modifications at both active and poised gene enhancer elements but also raise the possibility that enhancers associated with distinct cellular functions are partitioned based on specific combinations of histone modifications.
Cell Stem Cell | 2010
Boris Greber; Guangming Wu; Christof Bernemann; Jin Young Joo; Dong Wook Han; Kinarm Ko; Natalia Tapia; Davood Sabour; Jared Sterneckert; Paul J. Tesar; Hans R. Schöler
Mouse epiblast stem cells (EpiSCs) are cultured with FGF2 and Activin A, like human embryonic stem cells (hESCs), but the action of the associated pathways in EpiSCs has not been well characterized. Here, we show that activation of the Activin pathway promotes self-renewal of EpiSCs via direct activation of Nanog, whereas inhibition of this pathway induces neuroectodermal differentiation, like in hESCs. In contrast, the different roles of FGF signaling appear to be only partially conserved in the mouse. Our data suggest that FGF2 fails to cooperate with SMAD2/3 signaling in actively promoting EpiSC self-renewal through Nanog, in contrast to its role in hESCs. Rather, FGF appears to stabilize the epiblast state by dual inhibition of differentiation to neuroectoderm and of media-induced reversion to a mouse embryonic stem cell-like state. Our data extend the current model of cell fate decisions concerning EpiSCs by clarifying the distinct roles played by FGF signaling.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Carol B. Ware; Angelique M. Nelson; Brigham Mecham; Jennifer Hesson; Wenyu Zhou; Erica C. Jonlin; Antonio J. Jimenez-Caliani; Xinxian Deng; Christopher Cavanaugh; Savannah Cook; Paul J. Tesar; Jeffrey Okada; Lilyana Margaretha; Henrik Sperber; Michael Choi; C. Anthony Blau; Piper M. Treuting; R. David Hawkins; Vincenzo Cirulli; Hannele Ruohola-Baker
Significance We report on generation of nontransgenic, naïve human pluripotent cells that represent the developmentally earliest state described for human established cells. Existing human ES cell lines in the later primed state can be toggled in reverse to naïve by exposure to histone deacetylase inhibitors prior to naïve culture. A new line was established directly from an eight-cell embryo under naïve culture conditions. We describe the naïve state in humans and show that naïve human ES cells have expanded endoderm developmental capacity. The naïve pluripotent state has been shown in mice to lead to broad and more robust developmental potential relative to primed mouse epiblast cells. The human naïve ES cell state has eluded derivation without the use of transgenes, and forced expression of OCT4, KLF4, and KLF2 allows maintenance of human cells in a naïve state [Hanna J, et al. (2010) Proc Natl Acad Sci USA 107(20):9222–9227]. We describe two routes to generate nontransgenic naïve human ES cells (hESCs). The first is by reverse toggling of preexisting primed hESC lines by preculture in the histone deacetylase inhibitors butyrate and suberoylanilide hydroxamic acid, followed by culture in MEK/ERK and GSK3 inhibitors (2i) with FGF2. The second route is by direct derivation from a human embryo in 2i with FGF2. We show that human naïve cells meet mouse criteria for the naïve state by growth characteristics, antibody labeling profile, gene expression, X-inactivation profile, mitochondrial morphology, microRNA profile and development in the context of teratomas. hESCs can exist in a naïve state without the need for transgenes. Direct derivation is an elusive, but attainable, process, leading to cells at the earliest stage of in vitro pluripotency described for humans. Reverse toggling of primed cells to naïve is efficient and reproducible.
Cell | 2008
Yu-Fen Chou; Hsu Hsin Chen; Maureen Eijpe; Akiko Yabuuchi; Joshua G. Chenoweth; Paul J. Tesar; Jun Lu; Ronald D. G. McKay; Niels Geijsen
Pluripotent stem cell lines can be derived from blastocyst embryos, which yield embryonic stem cell lines (ES cells), as well as the postimplantation epiblast, which gives rise to epiblast stem cell lines (EpiSCs). Remarkably, ES cells and EpiSCs display profound differences in the combination of growth factors that maintain their pluripotent state. Molecular and functional differences between these two stem cell types demonstrate that the tissue of origin and/or the growth factor milieu may be important determinants of the stem cell identity. We explored how developmental stage of the tissue of origin and culture growth factor conditions affect the stem cell pluripotent state. Our findings indicate that novel stem cell lines, with unique functional and molecular properties, can be generated from murine blastocyst embryos. We demonstrate that the culture growth factor environment and cell-cell interaction play a critical role in defining several unique and stable stem cell ground states.
PLOS Genetics | 2005
Hualin Xi; Hennady P. Shulha; Jane M. Lin; Teresa Vales; Yutao Fu; David M Bodine; Ronald D. G. McKay; Josh G. Chenoweth; Paul J. Tesar; Terrence S. Furey; Bing Ren; Zhiping Weng; Gregory E. Crawford
The identification of regulatory elements from different cell types is necessary for understanding the mechanisms controlling cell type–specific and housekeeping gene expression. Mapping DNaseI hypersensitive (HS) sites is an accurate method for identifying the location of functional regulatory elements. We used a high throughput method called DNase-chip to identify 3,904 DNaseI HS sites from six cell types across 1% of the human genome. A significant number (22%) of DNaseI HS sites from each cell type are ubiquitously present among all cell types studied. Surprisingly, nearly all of these ubiquitous DNaseI HS sites correspond to either promoters or insulator elements: 86% of them are located near annotated transcription start sites and 10% are bound by CTCF, a protein with known enhancer-blocking insulator activity. We also identified a large number of DNaseI HS sites that are cell type specific (only present in one cell type); these regions are enriched for enhancer elements and correlate with cell type–specific gene expression as well as cell type–specific histone modifications. Finally, we found that approximately 8% of the genome overlaps a DNaseI HS site in at least one the six cell lines studied, indicating that a significant percentage of the genome is potentially functional.
Science | 2012
Batool Akhtar-Zaidi; Richard Cowper-Sal·lari; Olivia Corradin; Alina Saiakhova; Cynthia F. Bartels; Dheepa Balasubramanian; Lois Myeroff; James Lutterbaugh; Awad Jarrar; Matthew F. Kalady; Joseph Willis; Jason H. Moore; Paul J. Tesar; Thomas LaFramboise; Sanford D. Markowitz; Mathieu Lupien; Peter C. Scacheri
Colorectal Cancer Signature The mutations and genome aberrations that characterize cancer result in often dramatically altered gene and protein expression patterns. It is these altered expression patterns that directly and indirectly drive progression of the disease. In human primary colorectal cancer cells, Akhtar-Zaidi et al. (p. 736, published online 12 April) analyzed the pattern of epigenetically modified chromatin at “enhancer” sequences that are known to be critical in the control of gene expression. An epigenetic enhancer signature was defined that was specifically associated with colorectal cancer cells. Methylation tags at long-distance gene regulatory elements provide a signature specific to cancer cells. Cancer is characterized by gene expression aberrations. Studies have largely focused on coding sequences and promoters, even though distal regulatory elements play a central role in controlling transcription patterns. We used the histone mark H3K4me1 to analyze gain and loss of enhancer activity genome-wide in primary colon cancer lines relative to normal colon crypts. We identified thousands of variant enhancer loci (VELs) that comprise a signature that is robustly predictive of the in vivo colon cancer transcriptome. Furthermore, VELs are enriched in haplotype blocks containing colon cancer genetic risk variants, implicating these genomic regions in colon cancer pathogenesis. We propose that reproducible changes in the epigenome at enhancer elements drive a specific transcriptional program to promote colon carcinogenesis.
PLOS Genetics | 2010
Michael P. Schnetz; Lusy Handoko; Batool Akhtar-Zaidi; Cynthia F. Bartels; C. Filipe Pereira; Amanda G. Fisher; David J. Adams; Paul Flicek; Gregory E. Crawford; Thomas LaFramboise; Paul J. Tesar; Chia Lin Wei; Peter C. Scacheri
CHD7 is one of nine members of the chromodomain helicase DNA–binding domain family of ATP–dependent chromatin remodeling enzymes found in mammalian cells. De novo mutation of CHD7 is a major cause of CHARGE syndrome, a genetic condition characterized by multiple congenital anomalies. To gain insights to the function of CHD7, we used the technique of chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP–Seq) to map CHD7 sites in mouse ES cells. We identified 10,483 sites on chromatin bound by CHD7 at high confidence. Most of the CHD7 sites show features of gene enhancer elements. Specifically, CHD7 sites are predominantly located distal to transcription start sites, contain high levels of H3K4 mono-methylation, found within open chromatin that is hypersensitive to DNase I digestion, and correlate with ES cell-specific gene expression. Moreover, CHD7 co-localizes with P300, a known enhancer-binding protein and strong predictor of enhancer activity. Correlations with 18 other factors mapped by ChIP–seq in mouse ES cells indicate that CHD7 also co-localizes with ES cell master regulators OCT4, SOX2, and NANOG. Correlations between CHD7 sites and global gene expression profiles obtained from Chd7 +/+, Chd7 +/−, and Chd7 −/− ES cells indicate that CHD7 functions at enhancers as a transcriptional rheostat to modulate, or fine-tune the expression levels of ES–specific genes. CHD7 can modulate genes in either the positive or negative direction, although negative regulation appears to be the more direct effect of CHD7 binding. These data indicate that enhancer-binding proteins can limit gene expression and are not necessarily co-activators. Although ES cells are not likely to be affected in CHARGE syndrome, we propose that enhancer-mediated gene dysregulation contributes to disease pathogenesis and that the critical CHD7 target genes may be subject to positive or negative regulation.
Nature Biotechnology | 2013
Fadi J. Najm; Angela M. Lager; Anita Zaremba; Krysta Wyatt; Andrew V. Caprariello; Daniel C. Factor; Robert T. Karl; Tadao Maeda; Robert H. Miller; Paul J. Tesar
Cell-based therapies for myelin disorders, such as multiple sclerosis and leukodystrophies, require technologies to generate functional oligodendrocyte progenitor cells. Here we describe direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors. iOPCs exhibit a bipolar morphology and global gene expression profile consistent with bona fide OPCs. They can be expanded in vitro for at least five passages while retaining the ability to differentiate into multiprocessed oligodendrocytes. When transplanted to hypomyelinated mice, iOPCs are capable of ensheathing host axons and generating compact myelin. Lineage conversion of somatic cells to expandable iOPCs provides a strategy to study the molecular control of oligodendrocyte lineage identity and may facilitate neurological disease modeling and autologous remyelinating therapies.
Nature | 2015
Fadi J. Najm; Mayur Madhavan; Anita Zaremba; Elizabeth Shick; Robert T. Karl; Daniel C. Factor; Tyler E. Miller; Zachary S. Nevin; Christopher Kantor; Alex Sargent; Kevin L. Quick; Daniela Schlatzer; Hong Tang; Ruben Papoian; Kyle R. Brimacombe; Min Shen; Matthew B. Boxer; Ajit Jadhav; Andrew P. Robinson; Joseph R. Podojil; Stephen D. Miller; Robert H. Miller; Paul J. Tesar
Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.