Paul J. Trim
Sheffield Hallam University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul J. Trim.
Analytical Chemistry | 2008
Paul J. Trim; Claire Henson; Jennie L. Avery; Andrew McEwen; Marten F. Snel; Emmanuelle Claude; Peter S. Marshall; Andrew West; Alessandra P. Princivalle; Malcolm R. Clench
During early-stage drug development, drug and metabolite distribution studies are carried out in animal tissues using a range of techniques, particularly whole body autoradiography (WBA). While widely employed, WBA has a number of limitations, including the following: expensive synthesis of radiolabeled drugs and analyte specificity and identification. WBA only images the radiolabel. MALDI MSI has been shown previously to be advantageous for imaging the distribution of a range of drugs and metabolites in whole body sections. Ion mobility separation (IMS) adds a further separation step to imaging experiments; demonstrated here is MALDI-IMS-MS whole body imaging of rats dosed at 6 mg/kg i.v. with an anticancer drug, vinblastine and shown is the distribution of the precursor ion m/z 811.4 and several product ions including m/z 793, 751, 733, 719, 691, 649, 524, and 355. The distribution of vinblastine within the ventricles of the brain is also depicted. Clearly demonstrated in these data are the removal of interfering isobaric ions within the images of m/z 811.4 and also of the transition m/z 811-751, resulting in a higher confidence in the imaging data. Within this work, IMS has shown to be advantageous in both MS and MS/MS imaging experiments by separating vinblastine from an endogenous isobaric lipid.
Rapid Communications in Mass Spectrometry | 2008
Paul J. Trim; Sally Atkinson; Alessandra P. Princivalle; Peter S. Marshall; Andrew West; Malcolm R. Clench
To date matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) analysis has been largely concerned with mapping the distribution of known analytes in tissues. An important step in the progression of its applications is the determination of unknown variants for metabolite and protein profiling in both clinical studies and studies of disease. Principal component analysis (PCA) is a statistical approach which can be used as a means of determining latent variables in multivariate data sets. In the work reported here, PCA, in both unsupervised and supervised modes, has been used to differentiate brain regions based on their lipid composition determined by MALDI-MSI. PCA has been shown to be useful in the determination of hidden variables between spectra taken from six regions of brain tissue. It is possible to identify ions of interest from the loadings plot which are likely to be more prominent in the different regions of the brain and thus differentiating between white and grey matter. It is also possible to distinguish between the grey Cerebellar Cortex and the Hippocampal formation, due to the grey Cerebellar Cortex having a positive PC2 and the Hippocampal formation having a negative PC2 score; this is only possible in supervised PCA with this data set because with unsupervised PCA the two regions overlap.
Methods | 2016
Paul J. Trim; Marten F. Snel
Imaging of specific small molecules is particularly challenging using conventional optical microscopy techniques. This has led to the development of alternative imaging modalities, including mass spectrometry (MS)-based methods. This review aims to provide an overview of the technologies, methods and future directions of laser-based mass spectrometry imaging (MSI) of small molecules. In particular it will focus on matrix-assisted laser desorption/ionization (MALDI) as the ion source, although other laser mass spectrometry methods will also be discussed to provide context, both historical and current. Small molecule MALDI MSI has been performed on a wide variety of instrument platforms: these are reviewed, as are the laser systems that are commonly used in this technique. Instrumentation and methodology cross over in the areas of achieving optimal spatial resolution, a key parameter in obtaining meaningful data. Also discussed is sample preparation, which is pivotal in maintaining sample integrity, providing a true reflection of the distribution of analytes, spatial resolution and sensitivity. Like all developing analytical techniques there are challenges to be overcome. Two of these are dealing with sample complexity and obtaining quantitative information from an imaging experiment. Both of these topics are addressed. Finally, novel experiments including non-MALDI laser ionization techniques are highlighted and a future perspective on the role of MALDI MSI in the small molecule arena is provided.
Bioanalysis | 2009
Paul J. Trim; Simona Francese; Malcolm R. Clench
The study of drug distribution within biological tissue is a key part of the development of new pharmaceuticals. Matrix-assisted laser desorption ionization-mass spectrometric imaging is a powerful new imaging technique that can be used to study the distribution of a diverse range of endogenous and xenobiotic compounds within biological tissue. Here, fundamental aspects of the technique, appropriate instrumentation and applications in the study of xenobiotics and metabolite distribution are described. Sample preparation issues and some of the challenges in data interpretation/handling are also discussed.
Journal of Proteomics | 2012
Paul J. Trim; Marie-Claude Djidja; Tasneem Muharib; Laura M. Cole; Bryn Flinders; Vikki A. Carolan; Simona Francese; Malcolm R. Clench
Whilst it might be desirable to be able to purchase an up to date mass spectrometry platform and dedicate it to mass spectrometry imaging, this is not the situation initially for many laboratories. There are a variety of methods by which existing mass spectrometers can be upgraded/adapted to perform mass spectrometry imaging using MALDI, DESI or LAESI as the means of generating ions. The focus of this article is on relatively low cost adaptations of existing instrumentation with suggestions made for performance enhancements where appropriate. A brief description of attempts to perform SIMS imaging on quadrupole time of flight mass spectrometers is also given. The required software is described with particular emphasis on freeware packages which can be used to display/enhance data. Requirements for data pre-processing prior or statistical analysis are discussed along with the use of MATLAB® for the analysis itself.
Experimental Neurology | 2015
Neil R. Marshall; Sofia Hassiotis; Barbara King; Tina Rozaklis; Paul J. Trim; Stephen Duplock; Leanne K. Winner; Helen Beard; Marten F. Snel; R. D. Jolly; John J. Hopwood; Kim M. Hemsley
Injection of lysosomal enzyme into cisternal or ventricular cerebrospinal fluid (CSF) has been carried out in 11 lysosomal storage disorder models, with each study demonstrating reductions in primary substrate and secondary neuropathological changes, and several reports of improved neurological function. Whilst acute studies in mucopolysaccharidosis (MPS) type II mice revealed that intrathecally-delivered enzyme (into thoraco-lumbar CSF) accesses the brain, the impact of longer-term treatment of affected subjects via this route is unknown. This approach is presently being utilized to treat children with MPS types I, II and III. Our aim was to determine the efficacy of repeated intrathecal injection of recombinant human sulfamidase (rhSGSH) on pathological changes in the MPS IIIA dog brain. The outcomes were compared with those in dogs treated via intra-cisternal or ventricular routes. Control dogs received buffer or no treatment. Significant reductions in primary/secondary substrate levels in brain were observed in dogs treated via all routes, although the extent of the reduction differed regionally. Treatment via all CSF access points resulted in large reductions in microgliosis in superficial cerebral cortex, but only ventricular injection enabled amelioration in deep cerebral cortex. Formation of glutamic acid decarboxylase-positive axonal spheroids in deep cerebellar nuclei was prevented by treatment delivered via any route. Anti-rhSGSH antibodies in the sera of some dogs did not reduce therapeutic efficacy. Our data indicates the capacity of intra-spinal CSF-injected rhSGSH to circulate within CSF-filled spaces, penetrate into brain and mediate a significant reduction in substrate accumulation and secondary pathology in the MPS IIIA dog brain.
Rapid Communications in Mass Spectrometry | 2014
Paul J. Trim; Adeline A. Lau; John J. Hopwood; Marten F. Snel
RATIONALE Determination of genotype can be difficult, especially during the early stages of developing an animal model, e.g. when PCR primers are not yet available. An increase or decrease in specific metabolites can be used as a surrogate marker for genotype; for instance, in homozygous MPS IIIA mice heparan sulphate (HS) is increased. METHODS A simple method was developed for extracting and depolymerising HS from mouse toe tissue using methanolysis under acidic conditions. The sample was lyophilised and resuspended in methanolic HCl. The reaction products are desulphated disaccharides and readily analysable by liquid chromatography/tandem mass spectrometry (LC/MS/MS) in positive ion multiple reaction monitoring mode. Measurements were normalised to a spiked deuterated HS internal standard and to endogenous chondroitin sulphate (CS). RESULTS HS was measured in toe tissue taken from 30 mice in three groups of 10 (normal controls, MPS IIIA homozygotes and heterozygotes). A significant difference was observed between the MPS IIIA homozygotes and the other two groups, making it possible to identify mice with the MPS IIIA genotype based on the measurement of HS. Normalisation to CS was shown to correct for sample variability and reaction efficiency. CONCLUSIONS Analysis of toe tissue provides a simple and rapid way of determining a storage phenotype at 5 to 7 days of age. Significantly, this method does not require any additional samples to be taken from animals, as it utilises tissue that is a by-product of toe clipping, a method that is routinely used to permanently identify mice.
Molecular Genetics and Metabolism | 2015
Helen Beard; Amanda J. Luck; Sofia Hassiotis; Barbara King; Paul J. Trim; Marten F. Snel; John J. Hopwood; Kim M. Hemsley
MPS IIIA is an inherited neurodegenerative lysosomal storage disorder characterized by cognitive impairment, sleep-wake cycle disturbance, speech difficulties, eventual mental regression and early death. Neuropathological changes include accumulation of heparan sulfate and glycolipids, neuroinflammation and degeneration. Pre-clinical animal studies indicate that replacement of the deficient enzyme, sulfamidase, via intra-cerebrospinal fluid (CSF) injection is a clinically-relevant treatment approach, reducing neuropathological changes and improving symptoms. Given that there are several routes of administration of enzyme into the CSF (intrathecal lumbar, cisternal and ventricular), determining the effectiveness of each injection strategy is crucial in order to provide the best outcome for patients. We delivered recombinant human sulfamidase (rhSGSH) to a congenic mouse model of MPS IIIA via each of the three routes. Mice were euthanized 24h or one-week post-injection; the distribution of enzyme within the brain and spinal cord parenchyma was investigated, and the impact on primary substrate levels and other pathological lesions determined. Both ventricular and cisternal injection of rhSGSH enable enzyme delivery to brain and spinal cord regions, with the former mediating large, statistically significant decreases in substrate levels and reducing microglial activation. The single lumbar CSF infusion permitted more restricted enzyme delivery, with no reduction in substrate levels and little change in other disease-related lesions in brain tissue. While the ventricular route is the most invasive of the three methods, this strategy may enable the widest distribution of enzyme within the brain, and thus requires further exploration.
Journal of Neurochemistry | 2016
Barbara King; Sofia Hassiotis; Tina Rozaklis; Helen Beard; Paul J. Trim; Marten F. Snel; John J. Hopwood; Kim M. Hemsley
Repeated replacement of sulphamidase via cerebrospinal fluid injection is an effective treatment for pathological changes in the brain in mice and dogs with the lysosomal storage disorder, mucopolysaccharidosis type IIIA (MPS IIIA). Investigational trials of this approach are underway in children with this condition, however, infusions require attendance at a specialist medical facility. We sought to comprehensively evaluate the effectiveness of sustained‐release (osmotic pump‐delivered) enzyme replacement therapy in murine MPS IIIA as this method, if applied to humans, would require only subcutaneous administration of enzyme once the pump was installed. Six‐week‐old MPS IIIA and unaffected mice were implanted with subcutaneous mini‐osmotic pumps connected to an infusion cannula directed at the right lateral ventricle. Either recombinant human sulphamidase or vehicle were infused over the course of 7 weeks, with pumps replaced part‐way through the experimental period. We observed near‐normalisation of primarily stored substrate (heparan sulphate) in both hemispheres of the MPS IIIA brain and cervical spinal cord, as determined using tandem mass spectrometry. Immunohistochemistry indicated a reduction in secondarily stored GM3 ganglioside and neuroinflammatory markers. A bias towards the infusion side was seen in some, but not all outcomes. The recombinant enzyme appears stable under pump‐like conditions for at least 1 month. Given that infusion pumps are in clinical use in other nervous system disorders, e.g. for treatment of spasticity or brain tumours, this treatment method warrants consideration for testing in large animal models of MPS IIIA and other lysosomal storage disorders that affect the brain.
Analytical Chemistry | 2015
Paul J. Trim; John J. Hopwood; Marten F. Snel
Heparan sulfate (HS) is a complex oligosaccharide that is a marker of a number of diseases, most notably several of the mucopolysaccharidoses (MPS). It is a very heterogeneous compound and its quantification at physiological concentrations in patient samples is challenging. Here, we demonstrate novel derivatization chemistry for depolymerization/desulfation and alkylation of HS based on butanolysis. The resultant alkylated disaccharides are quantifiable by LC-MS/MS. This new method is at least 70-fold more sensitive than a previously published methanolysis method. Disaccharide yield over time is compared for methanolysis, ethanolysis, and butanolysis. Maximum disaccharide concentration was observed after 2 h with butanolysis and 18 h with ethanolysis whereas a maximum was not reached over the 24 h of the experiment with methanolysis. The sensitivity of the new technique is illustrated by the quantification of HS in 5 μL urine samples from MPS patients and healthy controls. HS was quantifiable in all samples including controls. Disaccharide reaction products were further characterized using exact mass MS/MS.