Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Wensveen is active.

Publication


Featured researches published by Paul J. Wensveen.


Journal of the Acoustical Society of America | 2010

The effect of signal duration on the underwater detection thresholds of a harbor porpoise (Phocoena phocoena) for single frequency-modulated tonal signals between 0.25 and 160 kHz

Ronald A. Kastelein; Lean Hoek; Christ A. F. de Jong; Paul J. Wensveen

The underwater hearing sensitivity of a young male harbor porpoise for tonal signals of various signal durations was quantified by using a behavioral psychophysical technique. The animal was trained to respond only when it detected an acoustic signal. Fifty percent detection thresholds were obtained for tonal signals (15 frequencies between 0.25-160 kHz, durations 0.5-5000 ms depending on the frequency; 134 frequency-duration combinations in total). Detection thresholds were quantified by varying signal amplitude by the 1-up 1-down staircase method. The hearing thresholds increased when the signal duration fell below the time constant of integration. The time constants, derived from an exponential model of integration [Plomp and Bouman, J. Acoust. Soc. Am. 31, 749-758 (1959)], varied from 629 ms at 2 kHz to 39 ms at 64 kHz. The integration times of the porpoises were similar to those of other mammals including humans, even though the porpoise is a marine mammal and a hearing specialist. The results enable more accurate estimations of the distances at which porpoises can detect short-duration environmental tonal signals. The audiogram thresholds presented by Kastelein et al. [J. Acoust. Soc. Am. 112, 334-344 (2002)], after correction for the frequency bandwidth of the FM signals, are similar to the results of the present study for signals of 1500 ms duration. Harbor porpoise hearing is more sensitive between 2 and 10 kHz, and less sensitive above 10 kHz, than formerly believed.


Aquatic Mammals | 2012

The Severity of behavioral changes observed during experimental exposures of killer (Orcinus orca), long-finned Pilot (Globicephala melas), and sperm (Physeter macrocephalus) whales to naval sonar

Patrick J. O. Miller; Petter Helgevold Kvadsheim; Frans-Peter A. Lam; Paul J. Wensveen; Ricardo Antunes; Ana Alves; Fleur Visser; Lars Kleivane; Peter L. Tyack; Lise Doksæter Sivle

This study describes behavioral changes of wild cetaceans observed during controlled exposures of naval sonar. In 2006 through 2009, 14 experiments were conducted with killer (n = 4), long-finned pilot (n = 6), and sperm (n = 4) whales. A total of 14 6-7 kHz upsweep, 13 1-2 kHz upsweep, and five 1-2 kHz downsweep sonar exposures, as well as seven Silent vessel control exposure sessions and eight playbacks of killer whale sounds were conducted. Sonar signals were transmitted by a towable source that approached each tagged subject from a starting distance of 6 to 8 km with a ramp up of source levels (from 152 to 158 to a maximum of 198 to 214 dB re: 1 μPa m). This procedure resulted in a gradual escalation of the sonar received level at the whale, measured by towed hydrophones and by tags that record movement and sound (Dtags). Observers tracked the position of each tagged animal and recorded group-level surface behavior. Two expert panels independently scored the severity of diverse behavioral changes observed during each sonar and control exposure, using the 0 to 9 point severity scale of Southall et al. (2007), and then reached consensus with a third-party moderator. The most severe responses scored (i.e., most likely to affect vital rates) included a temporary separation of a calf from its group, cessation of feeding or resting, and avoidance movements that continued after the sonar stopped transmitting. Higher severity scores were more common during sonar exposure than during Silent control sessions. Scored responses started at lower sound pressure levels (SPLs) for killer whales and were more severe during sonar exposures to killer and sperm whales than to long-finned pilot whales. Exposure sessions with the higher source level of 1 to 2 kHz sonar had more changes and a trend for higher maximum severity than 6 to 7 kHz sessions, but the order of the sessions had no effect. This approach is helpful to standardize the description of behavioral changes that occurred during our experiments and to identify and describe the severity of potential responses of free-ranging cetaceans to sonar.


Journal of the Acoustical Society of America | 2009

Underwater detection of tonal signals between 0.125 and 100kHz by harbor seals (Phoca vitulina)

Ronald A. Kastelein; Paul J. Wensveen; Lean Hoek; Willem C. Verboom; John M. Terhune

The underwater hearing sensitivities of two 1-year-old female harbor seals were quantified in a pool built for acoustic research, using a behavioral psychoacoustic technique. The animals were trained to respond when they detected an acoustic signal and not to respond when they did not (go/no-go response). Pure tones (0.125-0.25 kHz) and narrowband frequency modulated (tonal) signals (center frequencies 0.5-100 kHz) of 900 ms duration were tested. Thresholds at each frequency were measured using the up-down staircase method and defined as the stimulus level resulting in a 50% detection rate. The audiograms of the two seals did not differ statistically: both plots showed the typical mammalian U-shape, but with a wide and flat bottom. Maximum sensitivity (54 dB re 1 microPa, rms) occurred at 1 kHz. The frequency range of best hearing (within 10 dB of maximum sensitivity) was from 0.5 to 40 kHz (6(1/3) octaves). Higher hearing thresholds (indicating poorer sensitivity) were observed below 1 and above 40 kHz. Thresholds below 4 kHz were lower than those previously described for harbor seals, which demonstrates the importance of using quiet facilities, built specifically for acoustic research, for hearing studies in marine mammals. The results suggest that under unmasked conditions many anthropogenic noise sources and sounds from conspecifics are audible to harbor seals at greater ranges than formerly believed.


Marine Pollution Bulletin | 2014

High thresholds for avoidance of sonar by free-ranging long-finned pilot whales (Globicephala melas).

Ricardo Antunes; Petter Helgevold Kvadsheim; Frans-Peter A. Lam; Peter L. Tyack; Len Thomas; Paul J. Wensveen; Patrick J. O. Miller

The potential effects of exposing marine mammals to military sonar is a current concern. Dose-response relationships are useful for predicting potential environmental impacts of specific operations. To reveal behavioral response thresholds of exposure to sonar, we conducted 18 exposure/control approaches to 6 long-finned pilot whales. Source level and proximity of sonar transmitting one of two frequency bands (1-2 kHz and 6-7 kHz) were increased during exposure sessions. The 2-dimensional movement tracks were analyzed using a changepoint method to identify the avoidance response thresholds which were used to estimate dose-response relationships. No support for an effect of sonar frequency or previous exposures on the probability of response was found. Estimated response thresholds at which 50% of population show avoidance (SPLmax=170 dB re 1 μPa, SELcum=173 dB re 1 μPa(2) s) were higher than previously found for other cetaceans. The US Navy currently uses a generic dose-response relationship to predict the responses of cetaceans to naval active sonar, which has been found to underestimate behavioural impacts on killer whales and beaked whales. The navy curve appears to match more closely our results with long-finned pilot whales, though it might underestimate the probability of avoidance for pilot-whales at long distances from sonar sources.


Royal Society Open Science | 2015

First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise

Patrick J. O. Miller; Petter Helgevold Kvadsheim; Frans-Peter A. Lam; Peter L. Tyack; Charlotte Curé; Stacy L. DeRuiter; Lars Kleivane; Lise Doksæter Sivle; S.P. van IJsselmuide; Fleur Visser; Paul J. Wensveen; A.M. von Benda-Beckmann; L. M. Martín López; T. Narazaki; Sascha K. Hooker

Although northern bottlenose whales were the most heavily hunted beaked whale, we have little information about this species in its remote habitat of the North Atlantic Ocean. Underwater anthropogenic noise and disruption of their natural habitat may be major threats, given the sensitivity of other beaked whales to such noise disturbance. We attached dataloggers to 13 northern bottlenose whales and compared their natural sounds and movements to those of one individual exposed to escalating levels of 1–2 kHz upsweep naval sonar signals. At a received sound pressure level (SPL) of 98 dB re 1 μPa, the whale turned to approach the sound source, but at a received SPL of 107 dB re 1 μPa, the whale began moving in an unusually straight course and then made a near 180° turn away from the source, and performed the longest and deepest dive (94 min, 2339 m) recorded for this species. Animal movement parameters differed significantly from baseline for more than 7 h until the tag fell off 33–36 km away. No clicks were emitted during the response period, indicating cessation of normal echolocation-based foraging. A sharp decline in both acoustic and visual detections of conspecifics after exposure suggests other whales in the area responded similarly. Though more data are needed, our results indicate high sensitivity of this species to acoustic disturbance, with consequent risk from marine industrialization and naval activity.


Ecological Applications | 2016

Sperm whales reduce foraging effort during exposure to 1–2 kHz sonar and killer whale sounds

Saana Isojunno; Charlotte Curé; Petter Helgevold Kvadsheim; Frans-Peter A. Lam; Peter L. Tyack; Paul J. Wensveen; Patrick J. O. Miller

The time and energetic costs of behavioral responses to incidental and experimental sonar exposures, as well as control stimuli, were quantified using hidden state analysis of time series of acoustic and movement data recorded by tags (DTAG) attached to 12 sperm whales (Physeter macrocephalus) using suction cups. Behavioral state transition modeling showed that tagged whales switched to a non-foraging, non-resting state during both experimental transmissions of low-frequency active sonar from an approaching vessel (LFAS; 1-2 kHz, source level 214 dB re 1 µPa m, four tag records) and playbacks of potential predator (killer whale, Orcinus orca) sounds broadcast at naturally occurring sound levels as a positive control from a drifting boat (five tag records). Time spent in foraging states and the probability of prey capture attempts were reduced during these two types of exposures with little change in overall locomotion activity, suggesting an effect on energy intake with no immediate compensation. Whales switched to the active non-foraging state over received sound pressure levels of 131-165 dB re 1 µPa during LFAS exposure. In contrast, no changes in foraging behavior were detected in response to experimental negative controls (no-sonar ship approach or noise control playback) or to experimental medium-frequency active sonar exposures (MFAS; 6-7 kHz, source level 199 re 1 µPa m, received sound pressure level [SPL] = 73-158 dB re 1 µPa). Similarly, there was no reduction in foraging effort for three whales exposed to incidental, unidentified 4.7-5.1 kHz sonar signals received at lower levels (SPL = 89-133 dB re 1 µPa). These results demonstrate that similar to predation risk, exposure to sonar can affect functional behaviors, and indicate that increased perception of risk with higher source level or lower frequency may modulate how sperm whales respond to anthropogenic sound.


The Journal of Experimental Biology | 2014

Equal latency contours and auditory weighting functions for the harbour porpoise (Phocoena phocoena)

Paul J. Wensveen; Léonie A. E. Huijser; Lean Hoek; Ronald A. Kastelein

Loudness perception by human infants and animals can be studied under the assumption that sounds of equal loudness elicit equal reaction times (RTs). Simple RTs of a harbour porpoise to narrowband frequency-modulated signals were measured using a behavioural method and an RT sensor based on infrared light. Equal latency contours, which connect equal RTs across frequencies, for reference values of 150–200 ms (10 ms intervals) were derived from median RTs to 1 s signals with sound pressure levels (SPLs) of 59–168 dB re. 1 μPa and centre frequencies of 0.5, 1, 2, 4, 16, 31.5, 63, 80 and 125 kHz. The higher the signal level was above the hearing threshold of the harbour porpoise, the quicker the animal responded to the stimulus (median RT 98–522 ms). Equal latency contours roughly paralleled the hearing threshold at relatively low sensation levels (higher RTs). The difference in shape between the hearing threshold and the equal latency contours was more pronounced at higher levels (lower RTs); a flattening of the contours occurred for frequencies below 63 kHz. Relationships of the equal latency contour levels with the hearing threshold were used to create smoothed functions assumed to be representative of equal loudness contours. Auditory weighting functions were derived from these smoothed functions that may be used to predict perceived levels and correlated noise effects in the harbour porpoise, at least until actual equal loudness contours become available.


Aquatic Mammals | 2015

Severity of Expert-Identified Behavioural Responses of Humpback Whale, Minke Whale, and Northern Bottlenose Whale to Naval Sonar

Lise Doksæter Sivle; Petter Helgevold Kvadsheim; Charlotte Curé; Saana Isojunno; Paul J. Wensveen; Frans-Peter A. Lam; Fleur Visser; Lars Kleivane; Peter L. Tyack; Catriona Harris; Patrick J. O. Miller

Controlled exposure experiments using 1 to2 kHz sonar signals were conducted with 11 humpback whales (Megaptera novaeangliae), one minke whale (Balaenoptera acutorostrata), and one northern bottlenose whale (Hyperoodon ampullatus) during three field trials from 2011 to 2013. Ship approaches without sonar transmis-sions, playbacks of killer whale vocalizations, and broadband noise were conducted as controls. Behavioural parameters such as horizontal movement, diving, social interactions, and vocalizations were recorded by animal-attached tags and by visual and acoustic tracking. Based on these data, two expert panels independently scored the severity of behavioural changes that were judged likely to be responses to the experimental stimuli, using a severity scale ranging from no effect (0) to high potential to affect vital rates (9) if exposed repeatedly. After scoring, consensus was reached with a third-party moderator. In humpback whales, killer whale playbacks induced more severe responses than sonar exposure, and both sonar exposures and killer whale playbacks induced more responses and responses of higher severity than the no-sonar ship approaches and broadband noise playbacks. The most common response during sonar exposures in all three species was avoidance of the sound source. The most severe responses to sonar (severity 8) were progressive high-speed avoidance by the minke whale and long-term area avoidance by the bottlenose whale. Other severe responses included prolonged avoidance and cessation of feeding (severity 7). The minke whale and bottlenose whale started avoiding the source at a received sound pressure level (SPL) of 146 and 130 dB re 1 μPa, respectively. Humpback whales generally had less severe responses that were triggered at higher received levels. The probability of severity scores with the potential to affect vital rates increased with increasing sound exposure level (SEL). The single experiments with minke and bottlenose whales suggest they have greater susceptibility to sonar disturbance than humpback whales, but additional studies are needed to confirm this result.


Journal of the Acoustical Society of America | 2011

Effect of broadband-noise masking on the behavioral response of a harbor porpoise (Phocoena phocoena) to 1-s duration 6–7 kHz sonar up-sweeps

Ronald A. Kastelein; Nele Steen; Christ A. F. de Jong; Paul J. Wensveen; Willem C. Verboom

Naval sonar systems produce signals which may affect the behavior of harbor porpoises, though their effect may be reduced by ambient noise. To show how natural ambient noise influences the effect of sonar sweeps on porpoises, a porpoise in a pool was exposed to 1-s duration up-sweeps, similar in frequency range (6-7 kHz) to those of existing naval sonar systems. The sweep signals had randomly generated sweep intervals of 3-7 s (duty cycle: 19%). Behavioral parameters during exposure to signals were compared to those during baseline periods. The sessions were conducted under five background noise conditions: the local normal ambient noise and four conditions mimicking the spectra for wind-generated noise at Sea States 2-8. In all conditions, the sweeps caused the porpoise to swim further away from the transducer, surface more often, swim faster, and breathe more forcefully than during the baseline periods. However, the higher the background noise level, the smaller the effects of the sweeps on the surfacing behavior of the porpoise. Therefore, the effects of naval sonar systems on harbor porpoises are determined not only by the received level of the signals and the hearing sensitivity of the animals but also by the background noise.


Journal of the Acoustical Society of America | 2011

Near-threshold equal-loudness contours for harbor seals (Phoca vitulina) derived from reaction times during underwater audiometry: A preliminary study

Ronald A. Kastelein; Paul J. Wensveen; John M. Terhune; Christ A. F. de Jong

Equal-loudness functions describe relationships between the frequencies of sounds and their perceived loudness. This pilot study investigated the possibility of deriving equal-loudness contours based on the assumption that sounds of equal perceived loudness elicit equal reaction times (RTs). During a psychoacoustic underwater hearing study, the responses of two young female harbor seals to tonal signals between 0.125 and 100 kHz were filmed. Frame-by-frame analysis was used to quantify RT (the time between the onset of the sound stimulus and the onset of movement of the seal away from the listening station). Near-threshold equal-latency contours, as surrogates for equal-loudness contours, were estimated from RT-level functions fitted to mean RT data. The closer the received sound pressure level was to the 50% detection hearing threshold, the more slowly the animals reacted to the signal (RT range: 188-982 ms). Equal-latency contours were calculated relative to the RTs shown by each seal at sound levels of 0, 10, and 20 dB above the detection threshold at 1 kHz. Fifty percent detection thresholds are obtained with well-trained subjects actively listening for faint familiar sounds. When calculating audibility ranges of sounds for harbor seals in nature, it may be appropriate to consider levels 20 dB above this threshold.

Collaboration


Dive into the Paul J. Wensveen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petter Helgevold Kvadsheim

Norwegian Defence Research Establishment

View shared research outputs
Top Co-Authors

Avatar

Peter L. Tyack

Sea Mammal Research Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saana Isojunno

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

John M. Terhune

University of New Brunswick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Len Thomas

University of St Andrews

View shared research outputs
Top Co-Authors

Avatar

Lars Kleivane

Norwegian Defence Research Establishment

View shared research outputs
Researchain Logo
Decentralizing Knowledge