Paul K. Canavan
Northeastern University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul K. Canavan.
Journal of Orthopaedic Research | 2010
Nicholas Yang; Hamid Nayeb-Hashemi; Paul K. Canavan; Ashkan Vaziri
Subject‐specific three‐dimensional finite element models of the knee joint were created and used to study the effect of the frontal plane tibiofemoral angle on the stress and strain distribution in the knee cartilage during the stance phase of the gait cycle. Knee models of three subjects with different tibiofemoral angle and body weight were created based on magnetic resonance imaging of the knee. Loading and boundary conditions were determined from motion analysis and force platform data, in conjunction with the muscle‐force reduction method. During the stance phase of walking, all subjects exhibited a valgus–varus–valgus knee moment pattern with the maximum compressive load and varus knee moment occurring at approximately 25% of the stance phase of the gait cycle. Our results demonstrated that the subject with varus alignment had the largest stresses at the medial compartment of the knee compared to the subjects with normal alignment and valgus alignment, suggesting that this subject might be most susceptible to developing medial compartment osteoarthritis (OA). In addition, the magnitude of stress and strain on the lateral cartilage of the subject with valgus alignment were found to be larger compared to subjects with normal alignment and varus alignment, suggesting that this subject might be most susceptible to developing lateral compartment knee OA.
international conference on robotics and automation | 2007
Brian Weinberg; Jason Nikitczuk; Shyamal Patel; Benjamin L. Patritti; Constantinos Mavroidis; Paolo Bonato; Paul K. Canavan
This paper presents a novel, smart and portable active knee rehabilitation orthotic device (AKROD) designed to train stroke patients to correct knee hyperextension during stance and stiff-legged gait (defined as reduced knee flexion during swing). The knee brace provides variable damping controlled in ways that foster motor recovery in stroke patients. A resistive, variable damper, electro-rheological fluid (ERF) based component is used to facilitate knee flexion during stance by providing resistance to knee buckling. Furthermore, the knee brace is used to assist in knee control during swing, i.e. to allow patients to achieve adequate knee flexion for toe clearance and adequate knee extension in preparation to heel strike. The detailed design of AKROD, the first prototype built, closed loop control results and initial human testing are presented here
Annals of Biomedical Engineering | 2009
Nicholas Yang; Hamid Nayeb-Hashemi; Paul K. Canavan
Abnormal tibiofemoral alignment can create loading conditions at the knee that may lead to the initiation and progression of knee osteoarthritis (OA). The degenerative changes of the articular cartilage may occur earlier and with greater severity in individuals with abnormal frontal plane tibiofemoral alignment who undergo a partial or total meniscectomy. In this investigation, subject specific 3D finite element knee models were created from magnetic resonance images of two female subjects to study the combined effect of frontal plane tibiofemoral alignment and total and partial meniscectomy on the stress and strain at the knee cartilage. Different amounts of medial and lateral meniscectomies were modeled and subject specific loading conditions were determined from motion analysis and force platform data during single-leg support. The results showed that the maximum stresses and strains occurred on the medial tibial cartilage after medial meniscectomy but a greater percentage change in the contact stresses and strains occurred in the lateral cartilage after lateral meniscectomy for both subjects due to the resultant greater load bearing role of the lateral meniscus. The results indicate that individual’s frontal plane knee alignment and their unique local force distribution between the cartilage and meniscus play an important role in the biomechanical effects of total and partial meniscectomy.
IEEE-ASME Transactions on Mechatronics | 2010
Jason Nikitczuk; Brian Weinberg; Paul K. Canavan; Constantinos Mavroidis
This paper presents a novel, smart, and portable active knee rehabilitation orthotic device (AKROD) that provides variable damping at the knee joint, controlled in ways that can facilitate motor recovery in poststroke and other neurological disease patients, and to accelerate recovery in knee injury patients. The key features of AKROD include a compact, lightweight design, with highly tunable resistive torque capabilities through a variable damper component that is achieved through an electrorheological fluid (ERF) smart brake. Closed-loop torque and velocity controllers based on adaptive nonlinear control methodologies were developed and successfully implemented on the ERF brake. Preliminary testing of AKROD was performed using nine healthy subjects executing a set of isokinetic and isotonic exercises. These results were compared with exactly the same tests performed on a modern day computer controlled rehabilitation resistance machine, a Biodex System 3. The results showed comparable accuracy and repeatability between the two devices.
Computer Methods in Biomechanics and Biomedical Engineering | 2010
Nicholas Yang; Paul K. Canavan; Hamid Nayeb-Hashemi; Bijan Najafi; Ashkan Vaziri
A robust protocol for building subject-specific biomechanical models of the human knee joint is proposed which uses magnetic resonance imaging, motion analysis and force platform data in conjunction with detailed 3D finite element models. The proposed protocol can be used for determining stress and strain distributions and contact kinetics in different knee elements at different body postures during various physical activities. Several examples are provided to highlight the capabilities and potential applications of the proposed protocol. This includes preliminary results on the role of body weight on the stresses and strains induced in the knee articular cartilages and meniscus during single-leg stance and calculations of the induced stresses and ligament forces during the gait cycle.
international conference of the ieee engineering in medicine and biology society | 2006
Sharadsinh P. Vadher; Hamid Nayeb-Hashemi; Paul K. Canavan; Grant Warner
Meniscal tears are a common occurrence in the human knee joint. Orthopaedic surgeons routinely perform surgery to remove a portion of the torn meniscus. This surgery is referred to as a partial meniscectomy. It has been shown that individuals who have decreased amount of meniscus are likely to develop knee osteoarthritis. This research presents the analysis of the stresses in the knee joint upon various amounts of partial meniscectomy. To analyse the stresses in the knee joint using finite element method an axisymmetric model was developed. Articular cartilage was considered as three layers, which were modelled as a poroelastic transversely isotropic superficial layer, a poroelastic isotropic middle and deep layers and an elastic isotropic calcified cartilage layer. Eight cases were modelled including a knee joint with an intact meniscus, 10%, 20%, 30%, 40%, 50%, 60% and 65% medial meniscotomy. Under the axial load of human weight on the femoral articular cartilage with 40% removal of meniscus high contact stresses took place on cartilage surface. Further, with 30%, 40%, 50% of meniscectomy significant amount of contact area noticed between femoral and tibial articular cartilage. After 65% of meniscectomy the maximal shear stress in the cartilage increased up to 225% compared to knee with intact meniscus. It appears that meniscectomies greater than 20% drastically increases the stresses in the knee joint
Journal of the American Medical Directors Association | 2009
Paul K. Canavan; Lawrence P. Cahalin; Susan Lowe; Diane Fitzpatrick; Meredith Harris; Prudence Plummer-D'Amato
Managing gait disorders in the nursing home setting is a challenge. Nursing home residents can present with a variety of factors that may contribute to the presentation of gait abnormalities. The development of an individualized intervention program can be effective in improving a residents ability to ambulate. This article reviews the research pertaining to the management of gait disorders including deconditioning, therapeutic exercise intervention, dementia, and cardiovascular and cardiopulmonary systems. The review provides the reader with strategies to help improve and understand gait performance in older persons residing in nursing homes.
Computer Methods in Biomechanics and Biomedical Engineering | 2012
Andrew Homyk; A. Orsi; Story Wibby; Nicholas Yang; Hamid Nayeb-Hashemi; Paul K. Canavan
Anterior cruciate ligament (ACL) disruption is a common injury that is detrimental to an athletes quality of life. Determining the mechanisms that cause ACL injury is important in order to develop proper interventions. A failure locus defined as various combinations of loadings and movements, internal/external rotation of femur and valgus and varus moments at a 25o knee flexion angle leading to ACL failure was obtained. The results indicated that varus and valgus movements were more dominant to the ACL injury than femoral rotation. Also, Von Mises stress in the lateral tibial cartilage during the valgus ACL injury mechanism was 83% greater than that of the medial cartilage during the varus mechanism of ACL injury. The results of this study could be used to develop training programmes focused on the avoidance of the described combination of movements which may lead to ACL injury.
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2012
Ali Marzban; Paul K. Canavan; Grant Warner; Ashkan Vaziri; Hamid Nayeb-Hashemi
The process of adaptive bone remodeling can be simulated with a self-optimizing finite element method. The basic remodeling rules attempt to obtain a constant value for the strain energy per unit bone mass, by adapting density. The precise solution is dependent on the loads, initial conditions, and the parameters of the remodeling rule. While there are several investigations on developing algorithms leading to the bone density distribution in the proximal femur, these algorithms often require a large number of iterations. The aim of this study was to develop a more efficient adaptive bone remodeling algorithm, and to identify how the bone density distribution of the proximal femur was affected by parameters that govern the remodeling process. The forces at different phases of the gait cycle were applied as boundary conditions. The bone density distributions from these forces were averaged to estimate the density distribution in the proximal femur. The effect of varying the initial bone density, spatial influence function, non-linear order of the adaptive algorithm, and the influence range on the converged solution were investigated. The proposed procedure was shown to converge in a fewer number of iterations and requiring less computational time, while still generating a realistic bone density distribution. It was also shown that varying the identified parameters within reasonable upper and lower bounds had very little impact on the qualitative form of the converged solution. In contrast, the convergence rate was affected to a greater degree by variation of these parameters. In all cases, the solutions obtained are comparable with the actual density in the proximal femur, as measured by Dual-energy X-ray absorptiometry (DEXA) scans.
Computer Methods in Biomechanics and Biomedical Engineering | 2016
A. Orsi; Srinath S. Chakravarthy; Paul K. Canavan; E. Peña; Ruben Goebel; A. Vaziri; Hamid Nayeb-Hashemi
This study determined which knee joint motions lead to anterior cruciate ligament (ACL) rupture with the knee at 25° of flexion. The knee was subjected to internal and external rotations, as well as varus and valgus motions. A failure locus representing the relationship between these motions and ACL rupture was established using finite element simulations. This study also considered possible concomitant injuries to the tibial articular cartilage prior to ACL injury. The posterolateral bundle of the ACL demonstrated higher rupture susceptibility than the anteromedial bundle. The average varus angular displacement required for ACL failure was 46.6% lower compared to the average valgus angular displacement. Femoral external rotation decreased the frontal plane angle required for ACL failure by 27.5% compared to internal rotation. Tibial articular cartilage damage initiated prior to ACL failure in all valgus simulations. The results from this investigation agreed well with other experimental and analytical investigations. This study provides a greater understanding of the various knee joint motion combinations leading to ACL injury and articular cartilage damage.