Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Kellam is active.

Publication


Featured researches published by Paul Kellam.


The New England Journal of Medicine | 2013

Hospital Outbreak of Middle East Respiratory Syndrome Coronavirus

Abdullah Assiri; Allison McGeer; Trish M. Perl; Connie S. Price; Abdullah A. Al Rabeeah; Derek A. T. Cummings; Zaki N. Alabdullatif; Maher Assad; Abdulmohsen Almulhim; Hatem Q. Makhdoom; Hossam Madani; Rafat F. Alhakeem; Jaffar A. Al-Tawfiq; Matt Cotten; Simon J. Watson; Paul Kellam; Alimuddin Zumla; Ziad A. Memish

BACKGROUND In September 2012, the World Health Organization reported the first cases of pneumonia caused by the novel Middle East respiratory syndrome coronavirus (MERS-CoV). We describe a cluster of health care-acquired MERS-CoV infections. METHODS Medical records were reviewed for clinical and demographic information and determination of potential contacts and exposures. Case patients and contacts were interviewed. The incubation period and serial interval (the time between the successive onset of symptoms in a chain of transmission) were estimated. Viral RNA was sequenced. RESULTS Between April 1 and May 23, 2013, a total of 23 cases of MERS-CoV infection were reported in the eastern province of Saudi Arabia. Symptoms included fever in 20 patients (87%), cough in 20 (87%), shortness of breath in 11 (48%), and gastrointestinal symptoms in 8 (35%); 20 patients (87%) presented with abnormal chest radiographs. As of June 12, a total of 15 patients (65%) had died, 6 (26%) had recovered, and 2 (9%) remained hospitalized. The median incubation period was 5.2 days (95% confidence interval [CI], 1.9 to 14.7), and the serial interval was 7.6 days (95% CI, 2.5 to 23.1). A total of 21 of the 23 cases were acquired by person-to-person transmission in hemodialysis units, intensive care units, or in-patient units in three different health care facilities. Sequencing data from four isolates revealed a single monophyletic clade. Among 217 household contacts and more than 200 health care worker contacts whom we identified, MERS-CoV infection developed in 5 family members (3 with laboratory-confirmed cases) and in 2 health care workers (both with laboratory-confirmed cases). CONCLUSIONS Person-to-person transmission of MERS-CoV can occur in health care settings and may be associated with considerable morbidity. Surveillance and infection-control measures are critical to a global public health response.


Nature Medicine | 2000

The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells.

Stoyan A. Radkov; Paul Kellam; Chris Boshoff

Kaposi sarcoma-associated herpesvirus (KSHV) is involved in the etiopathogenesis of Kaposi sarcoma and certain lymphoproliferative disorders. Open reading frame (ORF) 73 encodes the main immunogenic latent nuclear antigen (LNA-1) of KSHV. LNA-1 maintains the KSHV episome and tethers the viral genome to chromatin during mitosis. In addition, LNA-1 interacts with p53 and represses its transcriptional activity. Here we show that LNA-1 also interacts with the retinoblastoma protein. LNA-1 transactivated an artificial promoter carrying the cell cycle transcription factor E2F DNA-binding sequences and also upregulated the cyclin E (CCNE1) promoter, but not the B-myb (MYBL2) promoter. LNA-1 overcame the flat-cell phenotype induced by retinoblastoma protein in Saos2 cells. In cooperation with the cellular oncogene Harvey rat sarcoma viral oncogene homolog (Hras), LNA-1 transformed primary rat embryo fibroblasts and rendered them tumorigenic. These findings indicate that LNA-1 acts as a transcription co-factor and may contribute to KSHV-induced oncogenesis by targeting the retinoblastoma protein–E2F transcriptional regulatory pathway


Nature | 2012

IFITM3 restricts the morbidity and mortality associated with influenza

Aaron R. Everitt; Simon Clare; Thomas Pertel; Sinu P. John; Rachael S. Wash; Sarah E. Smith; Christopher R. Chin; Eric M. Feeley; Jennifer S. Sims; David J. Adams; Helen Wise; Leanne Kane; David Goulding; Paul Digard; Verneri Anttila; J. Kenneth Baillie; Timothy S. Walsh; David A. Hume; Aarno Palotie; Yali Xue; Vincenza Colonna; Chris Tyler-Smith; Jake Dunning; Stephen B. Gordon; Rosalind L. Smyth; Peter J. M. Openshaw; Gordon Dougan; Abraham L. Brass; Paul Kellam

The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins’ in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 ‘Spanish’ influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.


Journal of Virology | 2001

Kaposi's Sarcoma-Associated Herpesvirus Latent and Lytic Gene Expression as Revealed by DNA Arrays

Richard G. Jenner; M. Mar Albà; Chris Boshoff; Paul Kellam

ABSTRACT Kaposis sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) is associated with three human tumors, Kaposis sarcoma, primary effusion lymphoma (PEL), and multicentric Castlemans disease. KSHV encodes a number of homologs of cellular proteins involved in the cell cycle, signal transduction, and modulation of the host immune response. Of the virus complement of over 85 open reading frames (ORFs), the expression of only a minority has been characterized individually. We have constructed a nylon membrane-based DNA array which allows the expression of almost every ORF of KSHV to be measured simultaneously. A PEL-derived cell line, BC-3, was used to study the expression of KSHV during latency and after the induction of lytic replication. Cluster analysis, which arranges genes according to their expression profile, revealed a correlation between expression and assigned gene function that is consistent with the known stages of the herpesvirus life cycle. Furthermore, latent and lytic genes thought to be functionally related cluster into groups. The correlation between gene expression and function also infers possible roles for KSHV genes yet to be characterized.


Emerging Infectious Diseases | 2014

Human infection with MERS coronavirus after exposure to infected camels, Saudi Arabia, 2013.

Ziad A. Memish; Matt Cotten; Benjamin Meyer; Simon J. Watson; Abdullah J. Alsahafi; Abdullah A. Al Rabeeah; Victor Max Corman; Andrea Sieberg; Hatem Q. Makhdoom; Abdullah Assiri; Malaki Al Masri; Souhaib Aldabbagh; Berend Jan Bosch; Martin Beer; Marcel A. Müller; Paul Kellam; Christian Drosten

We investigated a case of human infection with Middle East respiratory syndrome coronavirus (MERS-CoV) after exposure to infected camels. Analysis of the whole human-derived virus and 15% of the camel-derived virus sequence yielded nucleotide polymorphism signatures suggestive of cross-species transmission. Camels may act as a direct source of human MERS-CoV infection.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Kaposi's sarcoma-associated herpesvirus-infected primary effusion lymphoma has a plasma cell gene expression profile

Richard G. Jenner; Karine Maillard; Nicola Cattini; Robin A. Weiss; Chris Boshoff; Richard Wooster; Paul Kellam

Kaposis sarcoma-associated herpesvirus is associated with three human tumors: Kaposis sarcoma, and the B cell lymphomas, plasmablastic lymphoma associated with multicentric Castlemans disease, and primary effusion lymphoma (PEL). Epstein-Barr virus, the closest human relative of Kaposis sarcoma-associated herpesvirus, mimics host B cell signaling pathways to direct B cell development toward a memory B cell phenotype. Epstein-Barr virus-associated B cell tumors are presumed to arise as a consequence of this virus-mediated B cell activation. The stage of B cell development represented by PEL, how this stage relates to tumor pathology, and how this information may be used to treat the disease are largely unknown. In this study we used gene expression profiling to order a range of B cell tumors by stage of development. PEL gene expression closely resembles that of malignant plasma cells, including the low expression of mature B cell genes. The unfolded protein response is partially activated in PEL, but is fully activated in plasma cell tumors, linking endoplasmic reticulum stress to plasma cell development through XBP-1. PEL cells can be defined by the overexpression of genes involved in inflammation, cell adhesion, and invasion, which may be responsible for their presentation in body cavities. Similar to malignant plasma cells, all PEL samples tested express the vitamin D receptor and are sensitive to the vitamin D analogue drug EB 1089 (Seocalcitol).


The Lancet | 2013

Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study

Matt Cotten; Simon J. Watson; Paul Kellam; Abdullah A Al-Rabeeah; Hatem Q. Makhdoom; Abdullah Assiri; Jaffar A. Al-Tawfiq; Rafat F. Alhakeem; Hossam Madani; Fahad Alrabiah; Sami Al Hajjar; Wafa N Al-nassir; Ali Albarrak; Hesham Flemban; Hanan H. Balkhy; Sarah Alsubaie; Anne L. Palser; Astrid Gall; Rachael Bashford-Rogers; Andrew Rambaut; Alimuddin Zumla; Ziad A. Memish

Summary Background Since June, 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) has, worldwide, caused 104 infections in people including 49 deaths, with 82 cases and 41 deaths reported from Saudi Arabia. In addition to confirming diagnosis, we generated the MERS-CoV genomic sequences obtained directly from patient samples to provide important information on MERS-CoV transmission, evolution, and origin. Methods Full genome deep sequencing was done on nucleic acid extracted directly from PCR-confirmed clinical samples. Viral genomes were obtained from 21 MERS cases of which 13 had 100%, four 85–95%, and four 30–50% genome coverage. Phylogenetic analysis of the 21 sequences, combined with nine published MERS-CoV genomes, was done. Findings Three distinct MERS-CoV genotypes were identified in Riyadh. Phylogeographic analyses suggest the MERS-CoV zoonotic reservoir is geographically disperse. Selection analysis of the MERS-CoV genomes reveals the expected accumulation of genetic diversity including changes in the S protein. The genetic diversity in the Al-Hasa cluster suggests that the hospital outbreak might have had more than one virus introduction. Interpretation We present the largest number of MERS-CoV genomes (21) described so far. MERS-CoV full genome sequences provide greater detail in tracking transmission. Multiple introductions of MERS-CoV are identified and suggest lower R0 values. Transmission within Saudi Arabia is consistent with either movement of an animal reservoir, animal products, or movement of infected people. Further definition of the exposures responsible for the sporadic introductions of MERS-CoV into human populations is urgently needed. Funding Saudi Arabian Ministry of Health, Wellcome Trust, European Community, and National Institute of Health Research University College London Hospitals Biomedical Research Centre.


Retrovirology | 2010

Disease-associated XMRV sequences are consistent with laboratory contamination

Stéphane Hué; Eleanor R. Gray; Astrid Gall; Aris Katzourakis; Choon Ping Tan; Charlotte J. Houldcroft; Stuart McLaren; Deenan Pillay; Andrew Futreal; Jeremy A. Garson; Oliver G. Pybus; Paul Kellam; Greg J. Towers

BackgroundXenotropic murine leukaemia viruses (MLV-X) are endogenous gammaretroviruses that infect cells from many species, including humans. Xenotropic murine leukaemia virus-related virus (XMRV) is a retrovirus that has been the subject of intense debate since its detection in samples from humans with prostate cancer (PC) and chronic fatigue syndrome (CFS). Controversy has arisen from the failure of some studies to detect XMRV in PC or CFS patients and from inconsistent detection of XMRV in healthy controls.ResultsHere we demonstrate that Taqman PCR primers previously described as XMRV-specific can amplify common murine endogenous viral sequences from mouse suggesting that mouse DNA can contaminate patient samples and confound specific XMRV detection. To consider the provenance of XMRV we sequenced XMRV from the cell line 22Rv1, which is infected with an MLV-X that is indistinguishable from patient derived XMRV. Bayesian phylogenies clearly show that XMRV sequences reportedly derived from unlinked patients form a monophyletic clade with interspersed 22Rv1 clones (posterior probability >0.99). The cell line-derived sequences are ancestral to the patient-derived sequences (posterior probability >0.99). Furthermore, pol sequences apparently amplified from PC patient material (VP29 and VP184) are recombinants of XMRV and Moloney MLV (MoMLV) a virus with an envelope that lacks tropism for human cells. Considering the diversity of XMRV we show that the mean pairwise genetic distance among env and pol 22Rv1-derived sequences exceeds that of patient-associated sequences (Wilcoxon rank sum test: p = 0.005 and p < 0.001 for pol and env, respectively). Thus XMRV sequences acquire diversity in a cell line but not in patient samples. These observations are difficult to reconcile with the hypothesis that published XMRV sequences are related by a process of infectious transmission.ConclusionsWe provide several independent lines of evidence that XMRV detected by sensitive PCR methods in patient samples is the likely result of PCR contamination with mouse DNA and that the described clones of XMRV arose from the tumour cell line 22Rv1, which was probably infected with XMRV during xenografting in mice. We propose that XMRV might not be a genuine human pathogen.


Journal of Clinical Investigation | 2008

Bim-mediated deletion of antigen-specific CD8+ T cells in patients unable to control HBV infection

A. Ross Lopes; Paul Kellam; Abhishek Das; Claire Dunn; Antonia Kwan; Joanna Turner; Dimitra Peppa; Richard Gilson; Adam J. Gehring; Antonio Bertoletti; Mala K. Maini

HBV-specific CD8(+) T cells are critical for a successful immune response to HBV infection. They are markedly diminished in number in patients who fail to control the virus, but the mechanisms resulting in their depletion remain ill defined. Here, we dissected the defective HBV-specific CD8(+) T cell response associated with chronic HBV infection by gene expression profiling. We found that HBV-specific CD8(+) T cells from patients with different clinical outcomes could be distinguished by their patterns of gene expression. Microarray analysis revealed that overlapping clusters of functionally related apoptotic genes were upregulated in HBV-specific CD8(+) T cells from patients with chronic compared with resolved infection. Further analysis confirmed that levels of the proapoptotic protein Bcl2-interacting mediator (Bim) were upregulated in HBV-specific CD8(+) T cells from patients with chronic HBV infection. Blocking Bim-mediated apoptosis enhanced recovery of HBV-specific CD8(+) T cells both in culture and directly ex vivo. Consistent with evidence that Bim mediates apoptosis of CD8(+) T cells expressing low levels of CD127 (IL-7R), the few surviving HBV-specific CD8(+) T cells were CD127(hi )and had elevated levels of the antiapoptotic protein Mcl1, suggesting they were amenable to IL-7-mediated rescue from apoptosis. We therefore postulate that Bim-mediated attrition of HBV-specific CD8(+) T cells contributes to the inability of these cell populations to persist and control viral replication.


The Lancet | 1990

Zidovudine sensitivity of human immunodeficiency viruses from high-risk, symptom-free individuals during therapy

Charles A. Boucher; J. M. A. Lange; Jaap Goudsmit; Jan Mulder; M. Tersmette; R. E. Y. De Goede; Paul Kellam; Graham Darby; Brendan A. Larder

Human immunodeficiency type 1 isolates from 18 initially symptom-free men who were treated with zidovudine for 2 years were investigated for drug sensitivity. At the start all the men had persistent core antigenaemia; the acquired immunodeficiency syndrome developed in 6 during the study. The polymerase chain reaction was used to detect mutations at residue 215 of reverse transcriptase, a mutation associated with reduced drug sensitivity. After 2 years 16/18 isolates were mutant. However, after about 6 months of treatment the mutation was detected in only 7 isolates, 4 from individuals who subsequently had AIDS. Limited direct virus sensitivity data correlated with the genetic data. The rate of appearance of the 215 mutation seemed to correlate with CD4 counts and viral virulence.

Collaboration


Dive into the Paul Kellam's collaboration.

Top Co-Authors

Avatar

Matt Cotten

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Anne L. Palser

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Astrid Gall

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachael Bashford-Rogers

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deenan Pillay

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge