Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Kievit is active.

Publication


Featured researches published by Paul Kievit.


Diabetes | 2013

Chronic treatment with a melanocortin-4 receptor agonist causes weight loss, reduces insulin resistance, and improves cardiovascular function in diet-induced obese rhesus macaques

Paul Kievit; Heather A. Halem; Daniel L. Marks; Jesse Z. Dong; Maria M. Glavas; Puspha Sinnayah; Lindsay Pranger; Michael A. Cowley; Kevin L. Grove; Michael D. Culler

The melanocortin-4 receptor (MC4R) is well recognized as an important mediator of body weight homeostasis. Activation of MC4R causes dramatic weight loss in rodent models, and mutations in human are associated with obesity. This makes MC4R a logical target for pharmacological therapy for the treatment of obesity. However, previous studies in rodents and humans have observed a broad array of side effects caused by acute treatment with MC4R agonists, including increased heart rate and blood pressure. We demonstrate that treatment with a highly-selective novel MC4R agonist (BIM-22493 or RM-493) resulted in transient decreases in food intake (35%), with persistent weight loss over 8 weeks of treatment (13.5%) in a diet-induced obese nonhuman primate model. Consistent with weight loss, these animals significantly decreased adiposity and improved glucose tolerance. Importantly, we observed no increases in blood pressure or heart rate with BIM-22493 treatment. In contrast, treatment with LY2112688, an MC4R agonist previously shown to increase blood pressure and heart rate in humans, caused increases in blood pressure and heart rate, while modestly decreasing food intake. These studies demonstrate that distinct melanocortin peptide drugs can have widely different efficacies and side effects.


Journal of Neuroendocrinology | 2011

Leptin is not the Critical Signal for Kisspeptin or Luteinising Hormone Restoration During Exit from Negative Energy Balance

Cadence True; Melissa A. Kirigiti; Paul Kievit; Kevin L. Grove; M. S. Smith

Low levels of the adipocyte hormone leptin are considered to be the key signal contributing to inhibited gonadotrophin‐releasing hormone (GnRH) release and reproductive acyclicity during negative energy balance. Hypoleptinaemia‐induced inhibition of GnRH may be initiated with upstream inhibition of the secretagogue kisspeptin (Kiss1) because GnRH neurones do not express leptin receptors. The present study aimed to determine whether eliminating the hypoleptinaemia associated with caloric restriction (CR), by restoring leptin to normal basal levels, could reverse the suppression of the reproductive neuroendocrine axis. Fifty percent CR resulted in significant suppression of anteroventral periventricular Kiss1 mRNA, arcuate nucleus (ARH) Kiss1 and neurokinin B (NKB) mRNA levels and serum luteinising hormone (LH). Restoring leptin to normal basal levels did not restore Kiss1 or NKB mRNA or LH levels. Surprisingly, leptin did not activate expression of phosphorylated signal‐transducer and activator of transcription‐3 in ARC Kiss1 neurones, indicating that these neurones may not relay leptin signalling to GnRH neurones. Previous work in fasting models showing restoration of LH used a pharmacological dose of leptin. Therefore, in a 48‐h fast study, replacement of leptin to pharmacological levels was compared with replacement of leptin to normal basal levels. Maintaining leptin at normal basal levels during the fast did not prevent inhibition of LH. By contrast, pharmacological levels of leptin did maintain LH at control values. These results suggest that, although leptin may be a permissive signal for reproductive function, hypoleptinaemia is unlikely to be the critical signal responsible for ARC Kiss1 and LH inhibition during negative energy balance.


The Journal of Neuroscience | 2013

Leptin Stimulates Neuropeptide Y and Cocaine Amphetamine-Regulated Transcript Coexpressing Neuronal Activity in the Dorsomedial Hypothalamus in Diet-Induced Obese Mice

Shin J. Lee; Saurabh Verma; Stephanie E. Simonds; Melissa A. Kirigiti; Paul Kievit; Sarah R. Lindsley; Alberto Loche; M. Susan Smith; Michael A. Cowley; Kevin L. Grove

Neuropeptide Y (NPY) neurons in both the arcuate nucleus of the hypothalamus (ARH) and the dorsomedial hypothalamus (DMH) have been implicated in food intake and obesity. However, while ARH NPY is highly expressed in the lean animal, DMH NPY mRNA expression is observed only after diet-induced obesity (DIO). Furthermore, while ARH NPY neurons are inhibited by leptin, the effect of this adipokine on DMH NPY neurons is unknown. In this study we show that in contrast to the consistent expression in the ARH, DMH NPY mRNA expression was undetectable until after 10 weeks in mice fed a high-fat diet, and peaked at 20 weeks. Surprisingly, electrophysiological experiments demonstrated that leptin directly depolarized and increased the firing rate of DMH NPY neurons in DIO mice. To further differentiate the regulation of DMH and ARH NPY populations, fasting decreased expression of DMH NPY expression, while it increased ARH NPY expression. However, treatment with a leptin receptor antagonist failed to alter DMH NPY expression, indicating that leptin may not be the critical factor regulating mRNA expression. Importantly, we also demonstrated that DMH NPY neurons coexpress cocaine amphetamine-regulated transcript (CART); however, CART mRNA expression in the DMH peaked earlier in the progression of DIO. This study demonstrates novel and important findings. First, NPY and CART are coexpressed in the same neurons within the DMH, and second, leptin stimulates DMH NPY neurons. These studies suggest that during the progression of DIO, there is an unknown signal that drives the expression of the orexigenic NPY signal within the DMH, and that the chronic hyperleptinemia increases the activity of these NPY/CART neurons.


Circulation | 2014

Proinflammatory Endothelial Activation Detected by Molecular Imaging in Obese Nonhuman Primates Coincides With Onset of Insulin Resistance and Progressively Increases With Duration of Insulin Resistance

Scott M. Chadderdon; J. Todd Belcik; Lindsay Bader; Melissa A. Kirigiti; Dawn M. Peters; Paul Kievit; Kevin L. Grove; Jonathan R. Lindner

Background— Inflammation and insulin resistance (IR) are associated processes that potentiate risk for cardiovascular disease in obesity. The temporal relation between IR and inflammation is not completely characterized. We hypothesized that endothelial cell adhesion molecule expression in large arteries is an early event that coincides with diet-induced obesity and IR in primates. Methods and Results— Ten adult male rhesus macaques were studied at baseline and every 4 to 6 months on a high-fat diet for 2 years. Truncal fat, carotid intima-media thickness, plasma inflammatory biomarkers, and carotid P-selectin and vascular cell adhesion molecule-1 expression by contrast-enhanced ultrasound molecular imaging were assessed. Intravenous glucose tolerance test was performed at baseline and at 4 and 18 months. A high-fat diet produced a rapid increase (P<0.01) in weight, truncal fat, and degree of IR indicated by the insulin area under the curve and glucose disappearance rate on intravenous glucose tolerance test, all of which worsened minimally thereafter. Molecular imaging detected a progressive increase in endothelial cell adhesion molecule expression over time (5- to 7-fold greater than control agent signal at 2 years; P<0.01). Changes in intima-media thickness were not detected until 2 years and, although there was a trend toward an increase in plasma markers of inflammation (monocyte chemotactic protein-1, C-reactive protein), the pattern of increase varied considerably over time. Conclusions— In primates with diet-induced obesity, endothelial inflammatory activation is an early event that occurs coincident with the development of IR and long before any measurable change in carotid intima-media thickness. Endothelial activation is related more to the duration rather than to the severity of IR and is not mirrored by changes in plasma biomarkers.


American Journal of Physiology-endocrinology and Metabolism | 2010

Single-cell analysis of insulin-regulated fatty acid uptake in adipocytes

Oleg Varlamov; Romel Somwar; Anda Cornea; Paul Kievit; Kevin L. Grove; Charles T. Roberts

Increased body fat correlates with the enlargement of average fat cell size and reduced adipose tissue insulin sensitivity. It is currently unclear whether adipocytes, as they accumulate more triglycerides and grow in size, gradually become less insulin sensitive or whether obesity-related factors independently cause both the enlargement of adipocyte size and reduced adipose tissue insulin sensitivity. In the first instance, large and small adipocytes in the same tissue would exhibit differences in insulin sensitivity, whereas, in the second instance, adipocyte size per se would not necessarily correlate with insulin response. To analyze the effect of adipocyte size on insulin sensitivity, we employed a new single-cell imaging assay that resolves fatty acid uptake and insulin response in single adipocytes in subcutaneous adipose tissue explants. Here, we report that subcutaneous adipocytes are heterogeneous in size and intrinsic insulin sensitivity. Whereas smaller adipocytes respond to insulin by increasing lipid uptake, adipocytes with cell diameters larger than 80-100 microm are insulin resistant. We propose that, when cell size approaches a critical boundary, adipocytes lose insulin-dependent fatty acid transport. This negative feedback mechanism may protect adipocytes from lipid overload and restrict further expansion of adipose tissue, which leads to obesity and metabolic complications.


International Journal of Obesity | 2014

Increased fibroblast growth factor 21 expression in high-fat diet-sensitive non-human primates ( Macaca mulatta )

Eva B. Nygaard; Cathrine L. Møller; Paul Kievit; Kevin L. Grove; Birgitte Andersen

Objective:Fibroblast growth factor 21 (FGF21) is a metabolic regulator of glucose and lipid metabolism. The physiological role of FGF21 is not yet fully elucidated, however, administration of FGF21 lowers blood glucose in diabetic animals. Moreover, increased levels of FGF21 are found in obese and diabetic rodents and humans compared with lean/non-diabetic controls.Methods:Adult male rhesus macaque monkeys were chronically maintained on a high-fat diet (HFD) or a standard diet (control, CTR). Plasma levels of FGF21, triglycerides and cholesterol were measured and body weight was record. Glucose-stimulated insulin secretion (GSIS) and glucose clearance was determined during an intravenous glucose tolerance test. Furthermore, expression of FGF21 and its receptors were determined in liver, pancreas, three white adipose tissues (WATs) and two skeletal muscles.Results:A cohort of the high-fat fed monkeys responded to the HFD with increasing body weight, plasma lipids, total cholesterol, GSIS and decreased glucose tolerance. These monkeys were termed HFD sensitive. Another cohort of monkeys did not become obese and maintained normal insulin sensitivity. These animals were defined as HFD resistant. Plasma FGF21 levels were significantly increased in all HFD fed monkeys compared with the CTR group. The HFD-sensitive monkeys showed a significant increase in FGF21 mRNA expression in all examined tissues compared with CTR, whereas FGF21 expression in the HFD-resistant group was only increased in the liver, pancreas and the retroperitoneal WAT. In the WAT, the co-receptor β-klotho was downregulated in the HFD-sensitive monkeys compared with the HFD-resistant group.Conclusion:This study demonstrates that HFD changes FGF21 and FGF21 receptor expression in a tissue-specific manner in rhesus monkeys; differential regulation is moreover observed between HFD-sensitive and -resistant monkeys. Monkeys that maintain normal levels of the FGF21 co-receptor β-klotho in the WAT on HFD were protected toward development of dyslipidemia and hyperglycemia.


Obesity | 2015

Maternal high-fat diet and obesity impact palatable food intake and dopamine signaling in nonhuman primate offspring

Heidi M. Rivera; Paul Kievit; Melissa A. Kirigiti; Leigh Ann Bauman; Karalee Baquero; Peter Blundell; Tyler Dean; Jeanette C. Valleau; Diana Takahashi; Tim Frazee; Luke Douville; Jordan Majer; M. Susan Smith; Kevin L. Grove; Elinor L. Sullivan

To utilize a nonhuman primate model to examine the impact of maternal high‐fat diet (HFD) consumption and pre‐pregnancy obesity on offspring intake of palatable food and to examine whether maternal HFD consumption impaired development of the dopamine system, critical for the regulation of hedonic feeding.


Molecular metabolism | 2013

Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques

Shijie Li; Paul Kievit; Anna Karin Robertson; Ganesh Kolumam; Xiumin Li; Karin von Wachenfeldt; Christine Valfridsson; Sherry Bullens; Ilhem Messaoudi; Lindsay Bader; Kyra J. Cowan; Amrita V. Kamath; Nicholas van Bruggen; Stuart Bunting; Björn Frendéus; Kevin L. Grove

Oxidation of LDL (oxLDL) is a crucial step in the development of cardiovascular disease. Treatment with antibodies directed against oxLDL can reduce atherosclerosis in rodent models through unknown mechanisms. We demonstrate that through a novel mechanism of immune complex formation and Fc-γ receptor (FcγR) engagement, antibodies targeting oxLDL (MLDL1278a) are anti-inflammatory on innate immune cells via modulation of Syk, p38 MAPK phosphorylation and NFκB activity. Subsequent administration of MLDL1278a in diet-induced obese (DIO) nonhuman primates (NHP) resulted in a significant decrease in pro-inflammatory cytokines and improved overall immune cell function. Importantly, MLDL1278a treatment improved insulin sensitivity independent of body weight change. This study demonstrates a novel mechanism by which an anti-oxLDL antibody improves immune function and insulin sensitivity independent of internalization of oxLDL. This identifies MLDL1278a as a potential therapy for reducing vascular inflammation in diabetic conditions.


Current Opinion in Endocrinology, Diabetes and Obesity | 2014

The nonhuman primate as a model for type 2 diabetes.

Lynley D. Pound; Paul Kievit; Kevin L. Grove

Purpose of the reviewAlthough rodent models provide insight into the mechanisms underlying type 2 diabetes mellitus (T2DM), they are limited in their translatability to humans. The nonhuman primate (NHP) shares important metabolic similarities with the human, making it an ideal model for the investigation of type 2 diabetes and use in preclinical trials. This review highlights the key contributions in the field over the last year using the NHP model. Recent findingsThe NHP has not only provided novel insight into the normal and pathological processes that occur within the islet, but has also allowed for the preclinical testing of novel pharmaceutical targets for obesity and T2DM. Particularly, administration of fibroblast growth factor-21 in the NHP resulted in weight loss and improvements in metabolic health, supporting rodent studies and recent clinical trials. In addition, the NHP was used to demonstrate that a novel melanocortin-4 receptor agonist did not cause adverse cardiovascular effects. Finally, this model has been used to provide evidence that glucagon-like peptide-1-based therapies do not induce pancreatitis in the healthy NHP. SummaryThe insight gained from studies using the NHP model has allowed for a better understanding of the processes driving T2DM and has promoted the development of well tolerated and effective treatments.


American Journal of Physiology-endocrinology and Metabolism | 2012

Activity restriction, impaired capillary function, and the development of insulin resistance in lean primates

Scott M. Chadderdon; J. Todd Belcik; Elise Smith; Lindsay Pranger; Paul Kievit; Kevin L. Grove; Jonathan R. Lindner

Insulin produces capillary recruitment in skeletal muscle through a nitric oxide (NO)-dependent mechanism. Capillary recruitment is blunted in obese and diabetic subjects and contributes to impaired glucose uptake. This studys objective was to define whether inactivity, in the absence of obesity, leads to impaired capillary recruitment and contributes to insulin resistance (IR). A comprehensive metabolic and vascular assessment was performed on 19 adult male rhesus macaques (Macaca mulatta) after sedation with ketamine and during maintenance anesthesia with isoflurane. Thirteen normal-activity (NA) and six activity-restricted (AR) primates underwent contrast-enhanced ultrasound to determine skeletal muscle capillary blood volume (CBV) during an intravenous glucose tolerance test (IVGTT) and during contractile exercise. NO bioactivity was assessed by flow-mediated vasodilation. Although there were no differences in weight, basal glucose, basal insulin, or truncal fat, AR primates were insulin resistant compared with NA primates during an IVGTT (2,225 ± 734 vs. 5,171 ± 3,431 μg·ml⁻¹·min⁻¹, P < 0.05). Peak CBV was lower in AR compared with NA primates during IVGTT (0.06 ± 0.01 vs. 0.12 ± 0.02 ml/g, P < 0.01) and exercise (0.10 ± 0.02 vs. 0.20 ± 0.02 ml/g, P < 0.01), resulting in a lower peak skeletal muscle blood flow in both circumstances. The insulin-mediated changes in CBV correlated inversely with the degree of IR and directly with activity. Flow-mediated dilation was lower in the AR primates (4.6 ± 1.0 vs. 9.8 ± 2.3%, P = 0.01). Thus, activity restriction produces impaired skeletal muscle capillary recruitment during a carbohydrate challenge and contributes to IR in the absence of obesity. Reduced NO bioactivity may be a pathological link between inactivity and impaired capillary function.

Collaboration


Dive into the Paul Kievit's collaboration.

Top Co-Authors

Avatar

Kevin L. Grove

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Diana Takahashi

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Elinor L. Sullivan

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Melissa A. Kirigiti

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Tyler Dean

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cadence True

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar

Lindsay Bader

Oregon National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge