Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Klaassen is active.

Publication


Featured researches published by Paul Klaassen.


Microbial Cell Factories | 2012

De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology.

Jurgen F. Nijkamp; Marcel van den Broek; Erwin Datema; Stefan de Kok; Lizanne Bosman; Marijke A. H. Luttik; Pascale Daran-Lapujade; Wanwipa Vongsangnak; Jens Nielsen; Wilbert H. M. Heijne; Paul Klaassen; Chris J. Paddon; Darren M. Platt; Peter Kötter; Roeland C. H. J. van Ham; Marcel J. T. Reinders; Jack T. Pronk; Dick de Ridder; Jean-Marc Daran

Saccharomyces cerevisiae CEN.PK 113-7D is widely used for metabolic engineering and systems biology research in industry and academia. We sequenced, assembled, annotated and analyzed its genome. Single-nucleotide variations (SNV), insertions/deletions (indels) and differences in genome organization compared to the reference strain S. cerevisiae S288C were analyzed. In addition to a few large deletions and duplications, nearly 3000 indels were identified in the CEN.PK113-7D genome relative to S288C. These differences were overrepresented in genes whose functions are related to transcriptional regulation and chromatin remodelling. Some of these variations were caused by unstable tandem repeats, suggesting an innate evolvability of the corresponding genes. Besides a previously characterized mutation in adenylate cyclase, the CEN.PK113-7D genome sequence revealed a significant enrichment of non-synonymous mutations in genes encoding for components of the cAMP signalling pathway. Some phenotypic characteristics of the CEN.PK113-7D strains were explained by the presence of additional specific metabolic genes relative to S288C. In particular, the presence of the BIO1 and BIO6 genes correlated with a biotin prototrophy of CEN.PK113-7D. Furthermore, the copy number, chromosomal location and sequences of the MAL loci were resolved. The assembled sequence reveals that CEN.PK113-7D has a mosaic genome that combines characteristics of laboratory strains and wild-industrial strains.


BMC Genomics | 2009

Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production

Diana M. Harris; Zita A. van der Krogt; Paul Klaassen; Leonie M. Raamsdonk; Susanne Hage; Marco van den Berg; Roel A. L. Bovenberg; Jack T. Pronk; Jean-Marc Daran

BackgroundSince the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective.ResultsIn studies on β-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies.ConclusionThis study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the β-lactam pathway.


Biotechnology for Biofuels | 2014

Engineering of an endogenous hexose transporter into a specific D-xylose transporter facilitates glucose-xylose co-consumption in Saccharomyces cerevisiae

Jeroen G. Nijland; Hyun Yong Shin; Rene M. de Jong; Paul P. de Waal; Paul Klaassen; Arnold J. M. Driessen

BackgroundEngineering of Saccharomyces cerevisiae for the simultaneous utilization of hexose and pentose sugars is vital for cost-efficient cellulosic bioethanol production. This yeast lacks specific pentose transporters and depends on endogenous hexose transporters for low affinity pentose uptake. Consequently, engineered xylose-fermenting yeast strains first utilize D-glucose before D-xylose can be transported and metabolized.ResultsWe have used an evolutionary engineering approach that depends on a quadruple hexokinase deletion xylose-fermenting S. cerevisiae strain to select for growth on D-xylose in the presence of high D-glucose concentrations. This resulted in D-glucose-tolerant growth of the yeast of D-xylose. This could be attributed to mutations at N367 in the endogenous chimeric Hxt36 transporter, causing a defect in D-glucose transport while still allowing specific uptake of D-xylose. The Hxt36-N367A variant transports D-xylose with a high rate and improved affinity, enabling the efficient co-consumption of D-glucose and D-xylose.ConclusionsEngineering of yeast endogenous hexose transporters provides an effective strategy to construct glucose-insensitive xylose transporters that are well integrated in the carbon metabolism regulatory network, and that can be used for efficient lignocellulosic bioethanol production.


Biotechnology for Biofuels | 2015

An engineered cryptic Hxt11 sugar transporter facilitates glucose–xylose co-consumption in Saccharomyces cerevisiae

Hyun Yong Shin; Jeroen G. Nijland; Paul P. de Waal; Rene M. de Jong; Paul Klaassen; Arnold J. M. Driessen

BackgroundThe yeast Saccharomyces cerevisiae is unable to ferment pentose sugars like d-xylose. Through the introduction of the respective metabolic pathway, S. cerevisiae is able to ferment xylose but first utilizes d-glucose before the d-xylose can be transported and metabolized. Low affinity d-xylose uptake occurs through the endogenous hexose (Hxt) transporters. For a more robust sugar fermentation, co-consumption of d-glucose and d-xylose is desired as d-xylose fermentation is in particular prone to inhibition by compounds present in pretreated lignocellulosic feedstocks.ResultsEvolutionary engineering of a d-xylose-fermenting S. cerevisiae strain lacking the major transporter HXT1–7 and GAL2 genes yielded a derivative that shows improved growth on xylose because of the expression of a normally cryptic HXT11 gene. Hxt11 also supported improved growth on d-xylose by the wild-type strain. Further selection for glucose-insensitive growth on d-xylose employing a quadruple hexokinase deletion yielded mutations at N366 of Hxt11 that reversed the transporter specificity for d-glucose into d-xylose while maintaining high d-xylose transport rates. The Hxt11 mutant enabled the efficient co-fermentation of xylose and glucose at industrially relevant sugar concentrations when expressed in a strain lacking the HXT1–7 and GAL2 genes.ConclusionsHxt11 is a cryptic sugar transporter of S. cerevisiae that previously has not been associated with effective d-xylose transport. Mutagenesis of Hxt11 yielded transporters that show a better affinity for d-xylose as compared to d-glucose while maintaining high transport rates. d-glucose and d-xylose co-consumption is due to a redistribution of the sugar transport flux while maintaining the total sugar conversion rate into ethanol. This method provides a single transporter solution for effective fermentation on lignocellulosic feedstocks.


BMC Systems Biology | 2011

Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum: A systems biology approach

Rutger D. Douma; Joana M. Batista; Kai M. Touw; Jan A. K. W. Kiel; Arjen M. Krikken; Zheng Zhao; Tânia Veiga; Paul Klaassen; Roel A. L. Bovenberg; Jean-Marc Daran; Joseph J. Heijnen; Walter M. van Gulik

BackgroundIn microbial production of non-catabolic products such as antibiotics a loss of production capacity upon long-term cultivation (for example chemostat), a phenomenon called strain degeneration, is often observed. In this study a systems biology approach, monitoring changes from gene to produced flux, was used to study degeneration of penicillin production in a high producing Penicillium chrysogenum strain during prolonged ethanol-limited chemostat cultivations.ResultsDuring these cultivations, the biomass specific penicillin production rate decreased more than 10-fold in less than 22 generations. No evidence was obtained for a decrease of the copy number of the penicillin gene cluster, nor a significant down regulation of the expression of the penicillin biosynthesis genes. However, a strong down regulation of the biosynthesis pathway of cysteine, one of the precursors of penicillin, was observed. Furthermore the protein levels of the penicillin pathway enzymes L-α-(δ-aminoadipyl)-L-α-cystenyl-D-α-valine synthetase (ACVS) and isopenicillin-N synthase (IPNS), decreased significantly. Re-cultivation of fully degenerated cells in unlimited batch culture and subsequent C-limited chemostats did only result in a slight recovery of penicillin production.ConclusionsOur findings indicate that the observed degeneration is attributed to a significant decrease of the levels of the first two enzymes of the penicillin biosynthesis pathway, ACVS and IPNS. This decrease is not caused by genetic instability of the penicillin amplicon, neither by down regulation of the penicillin biosynthesis pathway. Furthermore no indications were obtained for degradation of these enzymes as a result of autophagy. Possible causes for the decreased enzyme levels could be a decrease of the translation efficiency of ACVS and IPNS during degeneration, or the presence of a culture variant impaired in the biosynthesis of functional proteins of these enzymes, which outcompeted the high producing part of the population.


BMC Biotechnology | 2008

Production of functionally active Penicillium chrysogenum isopenicillin N synthase in the yeast Hansenula polymorpha

Loknath Gidijala; Roel A. L. Bovenberg; Paul Klaassen; Ida J. van der Klei; Marten Veenhuis; Jan A. K. W. Kiel

Backgroundβ-Lactams like penicillin and cephalosporin are among the oldest known antibiotics used against bacterial infections. Industrially, penicillin is produced by the filamentous fungus Penicillium chrysogenum. Our goal is to introduce the entire penicillin biosynthesis pathway into the methylotrophic yeast Hansenula polymorpha. Yeast species have the advantage of being versatile, easy to handle and cultivate, and possess superior fermentation properties relative to filamentous fungi. One of the fundamental challenges is to produce functionally active enzyme in H. polymorpha.ResultsThe P. chrysogenum pcbC gene encoding isopenicillin N synthase (IPNS) was successfully expressed in H. polymorpha, but the protein produced was unstable and inactive when the host was grown at its optimal growth temperature (37°C). Heterologously produced IPNS protein levels were enhanced when the cultivation temperature was lowered to either 25°C or 30°C. Furthermore, IPNS produced at these lower cultivation temperatures was functionally active. Localization experiments demonstrated that, like in P. chrysogenum, in H. polymorpha IPNS is located in the cytosol.ConclusionIn P. chrysogenum, the enzymes involved in penicillin production are compartmentalized in the cytosol and in microbodies. In this study, we focus on the cytosolic enzyme IPNS. Our data show that high amounts of functionally active IPNS enzyme can be produced in the heterologous host during cultivation at 25°C, the optimal growth temperature for P. chrysogenum. This is a new step forward in the metabolic reprogramming of H. polymorpha to produce penicillin.


Biotechnology for Biofuels | 2016

Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae

Jeroen G. Nijland; Erwin P. P. Vos; Hyun Yong Shin; Paul P. de Waal; Paul Klaassen; Arnold J. M. Driessen

BackgroundEngineering of the yeast Saccharomyces cerevisiae for improved utilization of pentose sugars is vital for cost-efficient cellulosic bioethanol production. Although endogenous hexose transporters (Hxt) can be engineered into specific pentose transporters, they remain subjected to glucose-regulated protein degradation. Therefore, in the absence of glucose or when the glucose is exhausted from the medium, some Hxt proteins with high xylose transport capacity are rapidly degraded and removed from the cytoplasmic membrane. Thus, turnover of such Hxt proteins may lead to poor growth on solely xylose.ResultsThe low affinity hexose transporters Hxt1, Hxt36 (Hxt3 variant), and Hxt5 are subjected to catabolite degradation as evidenced by a loss of GFP fused hexose transporters from the membrane upon glucose depletion. Catabolite degradation occurs through ubiquitination, which is a major signaling pathway for turnover. Therefore, N-terminal lysine residues of the aforementioned Hxt proteins predicted to be the target of ubiquitination, were replaced for arginine residues. The mutagenesis resulted in improved membrane localization when cells were grown on solely xylose concomitantly with markedly stimulated growth on xylose. The mutagenesis also improved the late stages of sugar fermentation when cells are grown on both glucose and xylose.ConclusionsSubstitution of N-terminal lysine residues in the endogenous hexose transporters Hxt1 and Hxt36 that are subjected to catabolite degradation results in improved retention at the cytoplasmic membrane in the absence of glucose and causes improved xylose fermentation upon the depletion of glucose and when cells are grown in d-xylose alone.


Applied and Environmental Microbiology | 2017

Improved xylose metabolism by a CYC8 mutant of Saccharomyces cerevisiae

Jeroen G. Nijland; Hyun Yong Shin; Leonie G. M. Boender; Paul P. de Waal; Paul Klaassen; Arnold J. M. Driessen

ABSTRACT Engineering Saccharomyces cerevisiae for the utilization of pentose sugars is an important goal for the production of second-generation bioethanol and biochemicals. However, S. cerevisiae lacks specific pentose transporters, and in the presence of glucose, pentoses enter the cell inefficiently via endogenous hexose transporters (HXTs). By means of in vivo engineering, we have developed a quadruple hexokinase deletion mutant of S. cerevisiae that evolved into a strain that efficiently utilizes d-xylose in the presence of high d-glucose concentrations. A genome sequence analysis revealed a mutation (Y353C) in the general corepressor CYC8, or SSN6, which was found to be responsible for the phenotype when introduced individually in the nonevolved strain. A transcriptome analysis revealed altered expression of 95 genes in total, including genes involved in (i) hexose transport, (ii) maltose metabolism, (iii) cell wall function (mannoprotein family), and (iv) unknown functions (seripauperin multigene family). Of the 18 known HXTs, genes for 9 were upregulated, especially the low or nonexpressed HXT10, HXT13, HXT15, and HXT16. Mutant cells showed increased uptake rates of d-xylose in the presence of d-glucose, as well as elevated maximum rates of metabolism (Vmax) for both d-glucose and d-xylose transport. The data suggest that the increased expression of multiple hexose transporters renders d-xylose metabolism less sensitive to d-glucose inhibition due to an elevated transport rate of d-xylose into the cell. IMPORTANCE The yeast Saccharomyces cerevisiae is used for second-generation bioethanol formation. However, growth on xylose is limited by pentose transport through the endogenous hexose transporters (HXTs), as uptake is outcompeted by the preferred substrate, glucose. Mutant strains were obtained with improved growth characteristics on xylose in the presence of glucose, and the mutations mapped to the regulator Cyc8. The inactivation of Cyc8 caused increased expression of HXTs, thereby providing more capacity for the transport of xylose, presenting a further step toward a more robust process of industrial fermentation of lignocellulosic biomass using yeast.


Fems Yeast Research | 2017

Saccharomyces cerevisiae strains for second-generation ethanol production : from academic exploration to industrial implementation

Mickel L. A. Jansen; Jasmine M. Bracher; Ioannis Papapetridis; Maarten D. Verhoeven; Hans Marinus Charles Johannes De Bruijn; Paul P. de Waal; Antonius J. A. van Maris; Paul Klaassen; Jack T. Pronk

Abstract The recent start-up of several full-scale ‘second generation’ ethanol plants marks a major milestone in the development of Saccharomyces cerevisiae strains for fermentation of lignocellulosic hydrolysates of agricultural residues and energy crops. After a discussion of the challenges that these novel industrial contexts impose on yeast strains, this minireview describes key metabolic engineering strategies that have been developed to address these challenges. Additionally, it outlines how proof-of-concept studies, often developed in academic settings, can be used for the development of robust strain platforms that meet the requirements for industrial application. Fermentation performance of current engineered industrial S. cerevisiae strains is no longer a bottleneck in efforts to achieve the projected outputs of the first large-scale second-generation ethanol plants. Academic and industrial yeast research will continue to strengthen the economic value position of second-generation ethanol production by further improving fermentation kinetics, product yield and cellular robustness under process conditions.


Journal of Biotechnology | 2013

Searching for microbial protein over-expression in a complex matrix using automated high throughput MS-based proteomics tools

Michiel Akeroyd; Maurien Olsthoorn; Jort Steven Johan Gerritsma; Diana Gutker-Vermaas; Laurens Ekkelkamp; Tjeerd van Rij; Paul Klaassen; Wim Plugge; Ed Smit; Kerstin Strupat; Thibaut José Wenzel; Marcel van Tilborg; Rob van der Hoeven

In the discovery of new enzymes genomic and cDNA expression libraries containing thousands of differential clones are generated to obtain biodiversity. These libraries need to be screened for the activity of interest. Removing so-called empty and redundant clones significantly reduces the size of these expression libraries and therefore speeds up new enzyme discovery. Here, we present a sensitive, generic workflow for high throughput screening of successful microbial protein over-expression in microtiter plates containing a complex matrix based on mass spectrometry techniques. MALDI-LTQ-Orbitrap screening followed by principal component analysis and peptide mass fingerprinting was developed to obtain a throughput of ∼12,000 samples per week. Alternatively, a UHPLC-MS(2) approach including MS(2) protein identification was developed for microorganisms with a complex protein secretome with a throughput of ∼2000 samples per week. TCA-induced protein precipitation enhanced by addition of bovine serum albumin is used for protein purification prior to MS detection. We show that this generic workflow can effectively reduce large expression libraries from fungi and bacteria to their minimal size by detection of successful protein over-expression using MS.

Researchain Logo
Decentralizing Knowledge