Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Ko Ferrigno is active.

Publication


Featured researches published by Paul Ko Ferrigno.


Analytical Chemistry | 2012

Sensitive Affimer and Antibody Based Impedimetric Label-Free Assays for C-Reactive Protein

Anthony Johnson; Qifeng Song; Paul Ko Ferrigno; Paulo Roberto Bueno; Jason J. Davis

C-reactive protein (CRP) is an acute phase protein whose levels are increased in many disorders. Levels greater than 3 μg/mL serum have hitherto been considered to indicate pathology, but there is increasing interest in assessments between 0.1 and 10 μg/mL, which have been found to correlate with severity of risk for cardiovascular disease. We report herein the generation of both antibody and Affimer based impedance immunoassays for CRP that are substantially more sensitive than clinically utilized immunonephelometry and immunoturbidity assessments. Significant in this study is not only the use of a constrained peptide to detect a clinically important target but also that derived electrochemical impedance assays can be highly sensitive even with probes whose relatively weak (μM) affinities are not amenable to target detection by surface plasmon resonance (SPR). Key to this finding is acknowledging that receptive surfaces of comparatively low initial steric bulk and charge transfer resistance are especially primed to be highly responsive to target binding in electroanalytical assays of this type.


Biosensors and Bioelectronics | 2008

Highly specific label-free protein detection from lysed cells using internally referenced microcantilever sensors

Wenmiao Shu; Sophie Laurenson; Tuomas P. J. Knowles; Paul Ko Ferrigno; Ashwin A. Seshia

We report the investigation of label-free protein detection directly from lysed cells using microcantilever sensors. The integration of an internally referenced microcantilever sensor combined with peptide aptamer technology enables scalable and label-free detection of proteins from a complex biological environment (e.g. cell lysate). The internally referenced microcantilever sensor was found to be effective in minimizing both the effects of thermal drift and non-specific binding interactions with the backside of the cantilever, thereby allowing protein detection in a complex biological background. Highly specific peptide aptamers are used to modify the cantilever surface to specifically detect less than 80 nM CDK2 protein from yeast cell lysate. This binding of CDK2 on the microcantilever generates a tensile surface stress of average magnitude equal to 70+/-22 mN/m. Similar experiments conducted with quartz crystal microbalance (QCM) technology are consistent with the response observed using microcantilever sensors.


Journal of Biology | 2008

Electrical protein detection in cell lysates using high-density peptide-aptamer microarrays

David Evans; S. Johnson; Sophie Laurenson; A. Giles Davies; Paul Ko Ferrigno; Christoph Wälti

Background The dissection of biological pathways and of the molecular basis of disease requires devices to analyze simultaneously a staggering number of protein isoforms in a given cell under given conditions. Such devices face significant challenges, including the identification of probe molecules specific for each protein isoform, protein immobilization techniques with micrometer or submicrometer resolution, and the development of a sensing mechanism capable of very high-density, highly multiplexed detection. Results We present a novel strategy that offers practical solutions to these challenges, featuring peptide aptamers as artificial protein detectors arrayed on gold electrodes with feature sizes one order of magnitude smaller than existing formats. We describe a method to immobilize specific peptide aptamers on individual electrodes at the micrometer scale, together with a robust and label-free electronic sensing system. As a proving proof of principle experiment, we demonstrate the specific recognition of cyclin-dependent protein kinases in whole-cell lysates using arrays of ten electrodes functionalized with individual peptide aptamers, with no measurable cross-talk between electrodes. The sensitivity is within the clinically relevant range and can detect proteins against the high, whole-cell lysate background. Conclusion The use of peptide aptamers selected in vivo to recognize specific protein isoforms, the ability to functionalize each microelectrode individually, the electronic nature and scalability of the label-free detection and the scalability of the array fabrication combine to yield the potential for highly multiplexed devices with increasingly small detection areas and higher sensitivities that may ultimately allow the simultaneous monitoring of tens or hundreds of thousands of protein isoforms.


British Journal of Haematology | 2011

The role of BCL6 in lymphomas and routes to therapy

Simon D. Wagner; Matthew J. Ahearne; Paul Ko Ferrigno

BCL6 is a transcription factor that has essential B‐cell and T‐cell roles in normal antibody responses. It is involved in chromosomal translocations in diffuse large B‐cell lymphoma (DBCL; including primary mediastinal B‐cell lymphoma) and nodular lymphocyte predominant Hodgkin lymphoma, and is expressed in follicular lymphoma and Burkitts lymphoma. The neoplastic T‐cells of angioimmunoblastic T‐cell lymphoma also express BCL6. BCL6 prevents terminal B‐cell differentiation largely through repression of PRDM1. In the “cell of origin” classification of DLBCL BCL6 is associated with the germinal centre subtype, which carries a good response to modern treatments. More recently, specific BCL6 antagonists, including small molecule inhibitors, have been developed. These antagonists have demonstrated that DLBCL cells, in which BCL6 is transcriptionally active, are dependent on this gene for survival. BCL6 antagonists are active against primary DLBCL and may find future application in the treatment of lymphomas.


Analytical Chemistry | 2009

Peptide Aptamers in Label-Free Protein Detection: 2. Chemical Optimization and Detection of Distinct Protein Isoforms

Jason J. Davis; Jan Tkac; Rachel Humphreys; Anthony T. Buxton; Tracy Lee; Paul Ko Ferrigno

The early detection and diagnosis of cancer lies central to successful treatment and improved patient outcome. Current techniques are limited by the nature of the biological receptor and the assays available. This paper reports the use of novel biological probes, peptide aptamers, in detecting cyclin-dependent protein kinases (CDKs) whose activity is important in proliferating and cancerous cells. We describe, specifically, the optimization of an orientated peptide aptamer surface and its utilization in establishing a highly specific, low-nanomolar sensitive, detection protocol for the active form of CDK2. In comparing target binding affinity of two different aptamers (pep6 and pep9), both constructed through the insertion of peptide sequences into the surface of a scaffold protein, one was observed to be consistently more effective. Significantly, the pep9 aptamers were able to detect subtle changes in the conformation of CDK2 associated with activation of its catalytic activity that may be caused by the phosphorylation of a single amino acid (threonine 160). A typical response toward the inactive form of CDK2 was in the range of 0.5-2% of the binding of the active form of CDK2 in the concentration range from 2 to 20 nM. Although antibodies are occasionally able to recognize conformations in their targets, this is the first time that a nonantibody protein probe has been used to detect an active protein isoform. Because peptide aptamers are usually raised against full-length proteins, this raises the possibility that peptide aptamers will be able to extend the repertoire of probes that recognize protein conformations, post-translational modifications (PTMs), or conformations stabilized by PTMs.


eLife | 2017

Affimer proteins are versatile and renewable affinity reagents

Christian Tiede; Robert Bedford; Sophie J. Heseltine; Gina A. Smith; Imeshi Wijetunga; Rebecca L. Ross; Danah AlQallaf; Ashley Pe Roberts; Alexander Balls; Alistair Curd; Ruth Hughes; Heather L. Martin; Sarah R. Needham; Laura C. Zanetti-Domingues; Yashar Sadigh; Thomas P. Peacock; Anna Ah-San Tang; Naomi Gibson; Hannah F. Kyle; Geoffrey W Platt; Nicola Ingram; Thomas Taylor; Louise Coletta; Iain W. Manfield; Margaret A. Knowles; Sandra M. Bell; Filomena Esteves; Azhar Maqbool; Raj K. Prasad; Mark J. Drinkhill

Molecular recognition reagents are key tools for understanding biological processes and are used universally by scientists to study protein expression, localisation and interactions. Antibodies remain the most widely used of such reagents and many show excellent performance, although some are poorly characterised or have stability or batch variability issues, supporting the use of alternative binding proteins as complementary reagents for many applications. Here we report on the use of Affimer proteins as research reagents. We selected 12 diverse molecular targets for Affimer selection to exemplify their use in common molecular and cellular applications including the (a) selection against various target molecules; (b) modulation of protein function in vitro and in vivo; (c) labelling of tumour antigens in mouse models; and (d) use in affinity fluorescence and super-resolution microscopy. This work shows that Affimer proteins, as is the case for other alternative binding scaffolds, represent complementary affinity reagents to antibodies for various molecular and cell biology applications. DOI: http://dx.doi.org/10.7554/eLife.24903.001


Protein Engineering Design & Selection | 2010

Structure-function studies of an engineered scaffold protein derived from stefin A. I: Development of the SQM variant.

Toni Hoffmann; Lukas Kurt Josef Stadler; Michael Busby; Qifeng Song; Anthony T. Buxton; Simon D. Wagner; Jason J. Davis; Paul Ko Ferrigno

Non-antibody scaffold proteins are used for a range of applications, especially the assessment of protein–protein interactions within human cells. The search for a versatile, robust and biologically neutral scaffold previously led us to design STM (stefin A triple mutant), a scaffold derived from the intracellular protease inhibitor stefin A. Here, we describe five new STM-based scaffold proteins that contain modifications designed to further improve the versatility of our scaffold. In a step-by-step approach, we introduced restriction sites in the STM open reading frame that generated new peptide insertion sites in loop 1, loop 2 and the N-terminus of the scaffold protein. A second restriction site in ‘loop 2’ allows substitution of the native loop 2 sequence with alternative oligopeptides. None of the amino acid changes interfered significantly with the folding of the STM variants as assessed by circular dichroism spectroscopy. Of the five scaffold variants tested, one (stefin A quadruple mutant, SQM) was chosen as a versatile, stable scaffold. The insertion of epitope tags at varying positions showed that inserts into loop 1, attempted here for the first time, were generally well tolerated. However, N-terminal insertions of epitope tags in SQM had a detrimental effect on protein expression.


PLOS ONE | 2014

The ansamycin antibiotic, Rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain

Sian Evans; Benjamin T. Goult; Louise Fairall; Andrew G. Jamieson; Paul Ko Ferrigno; Robert J. Ford; John W. R. Schwabe; Simon D. Wagner

BCL6 is a transcriptional repressor that is over-expressed due to chromosomal translocations, or other abnormalities, in ∼40% of diffuse large B-cell lymphoma. BCL6 interacts with co-repressor, SMRT, and this is essential for its role in lymphomas. Peptide or small molecule inhibitors, which prevent the association of SMRT with BCL6, inhibit transcriptional repression and cause apoptosis of lymphoma cells in vitro and in vivo. In order to discover compounds, which have the potential to be developed into BCL6 inhibitors, we screened a natural product library. The ansamycin antibiotic, rifamycin SV, inhibited BCL6 transcriptional repression and NMR spectroscopy confirmed a direct interaction between rifamycin SV and BCL6. To further determine the characteristics of compounds binding to BCL6-POZ we analyzed four other members of this family and showed that rifabutin, bound most strongly. An X-ray crystal structure of the rifabutin-BCL6 complex revealed that rifabutin occupies a partly non-polar pocket making interactions with tyrosine58, asparagine21 and arginine24 of the BCL6-POZ domain. Importantly these residues are also important for the interaction of BLC6 with SMRT. This work demonstrates a unique approach to developing a structure activity relationship for a compound that will form the basis of a therapeutically useful BCL6 inhibitor.


Biophysical Chemistry | 2010

Optimisation of a multivalent Strep tag for protein detection

Michael Busby; Lukas Kurt Josef Stadler; Paul Ko Ferrigno; Jason J. Davis

The Strep tag is a peptide sequence that is able to mimic biotins ability to bind to streptavidin. Sequences of Strep tags from 0 to 5 have been appended to the N-terminus of a model protein, the Stefin A Quadruple Mutant (SQM) peptide aptamer scaffold, and the recombinant fusion proteins expressed. The affinities of the proteins for streptavidin have been assessed as a function of the number of tags inserted using a variety of labelled and label-free bioanalytical and surface based methods (Western blots, microarray assays and surface plasmon resonance spectroscopy). The binding affinity increases with the number of tags across all assays, reaching nanomolar levels with 5 inserts, an observation assigned to a progressive increase in the probability of a binding interaction occurring. In addition a novel interfacial FRET based assay has been developed for generic Strep tag interactions, which utilises a conventional microarray scanner and bypasses the requirement for expensive lifetime imaging equipment. By labelling both the tagged StrepX-SQM(2) and streptavidin targets, the conjugate is primed for label-free FRET based displacement assays.


Biosensors and Bioelectronics | 2018

Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for Her4 protein tumour biomarker detection

Pavel Zhurauski; Sunil K. Arya; Pawan Jolly; Christian Tiede; Darren C. Tomlinson; Paul Ko Ferrigno; Pedro Estrela

A novel Affimer-functionalised interdigitated electrode-based capacitive biosensor platform was developed for detection and estimation of Her4, a protein tumour biomarker, in undiluted serum. An anti-Her4 Affimer with a C-terminal cysteine was used to create the bio-recognition layer via self-assembly on gold interdigitated electrodes for the sensor fabrication. Electrochemical impedance spectroscopy (EIS) in the absence of redox markers was used to evaluate the sensor performance by monitoring the changes in capacitance. The Affimer sensor in buffer and in undiluted serum demonstrated high sensitivity with a broad dynamic range from 1 pM to 100 nM and a limit of detection lower than 1 pM both in buffer and in serum. Furthermore, the Affimer sensor demonstrated excellent specificity with negligible interference from serum proteins, suggesting resilience to non-specific binding. The sensing ability of the present Affimer sensor in spiked undiluted serum suggests its potential for a new range of Affimer-based sensors. The fabricated Affimer sensor can thus be further adapted with other probes having affinities to other biomarkers for a new range of biosensors.

Collaboration


Dive into the Paul Ko Ferrigno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qifeng Song

St James's University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Busby

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret A. Knowles

St James's University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge