Paul Kyu Han
KAIST
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul Kyu Han.
Korean Journal of Radiology | 2015
Sung-Hong Park; Paul Kyu Han; Seung Hong Choi
Balanced steady-state free precession (bSSFP) is a highly efficient pulse sequence that is known to provide the highest signal-to-noise ratio per unit time. Recently, bSSFP is getting increasingly popular in both the research and clinical communities. This review will be focusing on the application of the bSSFP technique in the context of probing the physiological and functional information. In the first part of this review, the basic principles of bSSFP are briefly covered. Afterwards, recent developments related to the application of bSSFP, in terms of physiological and functional imaging, are introduced and reviewed. Despite its long development history, bSSFP is still a promising technique that has many potential benefits for obtaining high-resolution physiological and functional images.
NMR in Biomedicine | 2016
Paul Kyu Han; Jong Chul Ye; Eung Yeop Kim; Seung Hong Choi; Sung-Hong Park
Recently, balanced steady‐state free precession (bSSFP) readout has been proposed for arterial spin labeling (ASL) perfusion imaging to reduce susceptibility artifacts at a relatively high spatial resolution and signal‐to‐noise ratio (SNR). However, the main limitation of bSSFP‐ASL is the low spatial coverage. In this work, methods to increase the spatial coverage of bSSFP‐ASL are proposed for distortion‐free, high‐resolution, whole‐brain perfusion imaging. Three strategies of (i) segmentation, (ii) compressed sensing (CS) and (iii) a hybrid approach combining the two methods were tested to increase the spatial coverage of pseudo‐continuous ASL (pCASL) with three‐dimensional bSSFP readout. The spatial coverage was increased by factors of two, four and six using each of the three approaches, whilst maintaining the same total scan time (5.3 min). The number of segments and/or CS acceleration rate (R) correspondingly increased to maintain the same bSSFP readout time (1.2 s). The segmentation approach allowed whole‐brain perfusion imaging for pCASL‐bSSFP with no penalty in SNR and/or total scan time. The CS approach increased the spatial coverage of pCASL‐bSSFP whilst maintaining the temporal resolution, with minimal impact on the image quality. The hybrid approach provided compromised effects between the two methods. Balanced SSFP‐based ASL allows the acquisition of perfusion images with wide spatial coverage, high spatial resolution and SNR, and reduced susceptibility artifacts, and thus may become a good choice for clinical and neurological studies. Copyright
PLOS ONE | 2015
Paul Kyu Han; Jeffrey W. Barker; Ki Hwan Kim; Seung Hong Choi; Kyongtae T. Bae; Sung-Hong Park
The recent blood flow and magnetization transfer (MT) technique termed alternate ascending/descending directional navigation (ALADDIN) achieves the contrast using interslice blood flow and MT effects with no separate preparation RF pulse, thereby potentially overcoming limitations of conventional methods. In this study, we examined the signal characteristics of ALADDIN as a simultaneous blood flow and MT imaging strategy, by comparing it with pseudo-continuous ASL (pCASL) and conventional MT asymmetry (MTA) methods, all of which had the same bSSFP readout. Bloch-equation simulations and experiments showed ALADDIN perfusion signals increased with flip angle, whereas MTA signals peaked at flip angle around 45°−60°. ALADDIN provided signals comparable to those of pCASL and conventional MTA methods emulating the first, second, and third prior slices of ALADDIN under the same scan conditions, suggesting ALADDIN signals to be superposition of signals from multiple labeling planes. The quantitative cerebral blood flow signals from a modified continuous ASL model overestimated the perfusion signals compared to those measured with a pulsed ASL method. Simultaneous mapping of blood flow, MTA, and MT ratio in the whole brain is feasible with ALADDIN within a clinically reasonable time, which can potentially help diagnosis of various diseases.
PLOS ONE | 2015
Jeffrey W. Barker; Paul Kyu Han; Seung Hong Choi; Kyongtae T. Bae; Sung-Hong Park
We present a new method for magnetization transfer (MT) ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP) imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay) and reference images (5–8 s delay) for MT ratio (MTR) imaging of the brain. The effects of varying flip angle and phase encoding (PE) order were investigated experimentally in normal, healthy subjects. Values of up to ∼50% and ∼40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.
Magnetic Resonance in Medicine | 2017
Paul Kyu Han; Seung Hong Choi; Sung-Hong Park
To investigate the performance of control scans in pseudo‐continuous ASL (pCASL) and propose strategies for improving sensitivity and reliability of pCASL.
BioMed Research International | 2015
Paul Kyu Han; Sung-Hong Park; Seong Gi Kim; Jong Chul Ye
Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields.
Proceedings of SPIE | 2011
Kangjoo Lee; Paul Kyu Han; Jong Chul Ye
Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimers disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brains functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.
Magnetic Resonance Imaging | 2017
Paul Kyu Han; Hyun Wook Park; Sung-Hong Park
In magnetic resonance imaging (MRI), a non-zero offset in the receiver baseline signal during acquisition results in a bright spot or a line artifact in the center of the image known as a direct current (DC) artifact. Several methods have been suggested in the past for the removal or correction of DC artifacts in MR images, however, these methods cannot be applied directly when a specific phase-cycling technique is used in the imaging sequence. In this work, we proposed a new, simple technique that enables correction of DC artifacts for any arbitrary phase-cycling imaging sequences. The technique is composed of phase unification, DC offset estimation and correction, and phase restoration. The feasibility of the proposed method was demonstrated via phantom and in vivo experiments with a multiple phase-cycling balanced steady-state free precession (bSSFP) imaging sequence. Results showed successful removal of the DC artifacts in images acquired using bSSFP with phase-cycling angles of 0°, 90°, 180°, and 270°, indicating potential feasibility of the proposed method to any imaging sequence with arbitrary phase-cycling angles.
The 2nd International Congress on Magnetic Resonance Imaging & The 19th Annual Scientific Meeting of Korean Society for Magnetic Resonance in Medicine 2014 | 2014
Paul Kyu Han; Jong Chul Ye; Seung Hong Choi; Sung-Hong Park
International Society for Magnetic Resonance in Medicine 2014 | 2014
Paul Kyu Han; Jong Chul Ye; Seung Hong Choi; Sung-Hong Park