Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul L. Boyer is active.

Publication


Featured researches published by Paul L. Boyer.


The EMBO Journal | 2001

Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA.

Stefan G. Sarafianos; Kalyan Das; Chris Tantillo; Arthur D. Clark; Jianping Ding; Jeannette M. Whitcomb; Paul L. Boyer; Stephen H. Hughes; Edward Arnold

We have determined the 3.0 Å resolution structure of wild‐type HIV‐1 reverse transcriptase in complex with an RNA:DNA oligonucleotide whose sequence includes a purine‐rich segment from the HIV‐1 genome called the polypurine tract (PPT). The PPT is resistant to ribonuclease H (RNase H) cleavage and is used as a primer for second DNA strand synthesis. The ‘RNase H primer grip’, consisting of amino acids that interact with the DNA primer strand, may contribute to RNase H catalysis and cleavage specificity. Cleavage specificity is also controlled by the width of the minor groove and the trajectory of the RNA:DNA, both of which are sequence dependent. An unusual ‘unzipping’ of 7 bp occurs in the adenine stretch of the PPT: an unpaired base on the template strand takes the base pairing out of register and then, following two offset base pairs, an unpaired base on the primer strand re‐establishes the normal register. The structural aberration extends to the RNase H active site and may play a role in the resistance of PPT to RNase H cleavage.


Journal of Virology | 2001

Selective Excision of AZTMP by Drug-Resistant Human Immunodeficiency Virus Reverse Transcriptase

Paul L. Boyer; Stefan G. Sarafianos; Edward Arnold; Stephen H. Hughes

ABSTRACT Two distinct mechanisms can be envisioned for resistance of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) to nucleoside analogs: one in which the mutations interfere with the ability of HIV-1 RT to incorporate the analog, and the other in which the mutations enhance the excision of the analog after it has been incorporated. It has been clear for some time that there are mutations that selectively interfere with the incorporation of nucleoside analogs; however, it has only recently been proposed that zidovudine (AZT) resistance can involve the excision of the nucleoside analog after it has been incorporated into viral DNA. Although this proposal resolves some important issues, it leaves some questions unanswered. In particular, how do the AZT resistance mutations enhance excision, and what mechanism(s) causes the excision reaction to be relatively specific for AZT? We have used both structural and biochemical data to develop a model. In this model, several of the mutations associated with AZT resistance act primarily to enhance the binding of ATP, which is the most likely pyrophosphate donor in the in vivo excision reaction. The AZT resistance mutations serve to increase the affinity of RT for ATP so that, at physiological ATP concentrations, excision is reasonably efficient. So far as we can determine, the specificity of the excision reaction for an AZT-terminated primer is not due to the mutations that confer resistance, but depends instead on the structure of the region around the HIV-1 RT polymerase active site and on its interactions with the azido group of AZT. Steric constraints involving the azido group cause the end of an AZT 5′-monophosphate-terminated primer to preferentially reside at the nucleotide binding site, which favors excision.


The EMBO Journal | 2002

Structures of HIV‐1 reverse transcriptase with pre‐ and post‐translocation AZTMP‐terminated DNA

Stefan G. Sarafianos; Arthur D. Clark; Kalyan Das; Steve Tuske; Jens J. Birktoft; Palanichamy Ilankumaran; Andagar R. Ramesha; Jane M. Sayer; Donald M. Jerina; Paul L. Boyer; Stephen H. Hughes; Eddy Arnold

AZT (3′‐azido‐3′‐deoxythymidine) resistance involves the enhanced excision of AZTMP from the end of the primer strand by HIV‐1 reverse transcriptase. This reaction can occur when an AZTMP‐terminated primer is bound at the nucleotide‐binding site (pre‐translocation complex N) but not at the ‘priming’ site (post‐translocation complex P). We determined the crystal structures of N and P complexes at 3.0 and 3.1 Å resolution. These structures provide insight into the structural basis of AZTMP excision and the mechanism of translocation. Docking of a dNTP in the P complex structure suggests steric crowding in forming a stable ternary complex that should increase the relative amount of the N complex, which is the substrate for excision. Structural differences between complexes N and P suggest that the conserved YMDD loop is involved in translocation, acting as a springboard that helps to propel the primer terminus from the N to the P site after dNMP incorporation.


Journal of Virology | 2001

Replication of Phenotypically Mixed Human Immunodeficiency Virus Type 1 Virions Containing Catalytically Active and Catalytically Inactive Reverse Transcriptase

John G. Julias; Andrea L. Ferris; Paul L. Boyer; Stephen H. Hughes

ABSTRACT The amount of excess polymerase and RNase H activity in human immunodeficiency virus type 1 virions was measured by using vectors that undergo a single round of replication. Vectors containing wild-type reverse transcriptase (RT), vectors encoding the D110E mutation to inactivate polymerase, and vectors encoding mutations D443A and E478Q to inactivate RNase H were constructed. 293 cells were cotransfected with different proportions of plasmids encoding these vectors to generate phenotypically mixed virions. The resulting viruses were used to infect human osteosarcoma cells, and the relative infectivity of the viruses was determined by measuring transduction of the murine cell surface marker CD24, which is encoded by the vectors. The results indicated that there is an excess of both polymerase and RNase H activities in virions. Viral replication was reduced to 42% of wild-type levels in virions with where half of the RT molecules were predicted to be catalytically active but dropped to 3% of wild-type levels when 25% of the RT molecules were active. However, reducing RNase H activity had a lesser effect on viral replication. As expected, based on previous work with murine leukemia virus, there was relatively inefficient virus replication when the RNase H and polymerase activities were encoded on separate vectors (D110E plus E478Q and D110E plus D443A). To determine how virus replication failed when polymerase and RNase H activities were reduced, reverse transcription intermediates were measured in vector-infected cells by using quantitative real-time PCR. The results indicated that using the D11OE mutation to reduce the amount of active polymerase reduced the number of reverse transcripts that were initiated and also reduced the amounts of products from the late stages of reverse transcription. If the E478Q mutation was used to reduce RNase H activity, the number of reverse transcripts that were initiated was reduced; there was also a strong effect on minus-strand transfer.


Chemistry & Biology | 1999

Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site

Stefan G. Sarafianos; Kalyan Dasi; Jianping Dingi; Paul L. Boyer; Stephen H. Hughes; Edward Arnold

Comparison of the recently solved structure of HIV-1 reverse transcriptase (RT)-DNA-dNTP ternary complex with the previously solved structure of RT-DNA binary complex suggests mechanisms by which the HIV-1 RT becomes resistant to nucleoside-analog inhibitors, drugs currently used in the treatment of AIDS.


Journal of Virology | 2002

The M184V Mutation Reduces the Selective Excision of Zidovudine 5′-Monophosphate (AZTMP) by the Reverse Transcriptase of Human Immunodeficiency Virus Type 1

Paul L. Boyer; Stefan G. Sarafianos; Edward Arnold; Stephen H. Hughes

ABSTRACT The M184V mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) causes resistance to lamivudine, but it also increases the sensitivity of the virus to zidovudine (3′-azido-3′-deoxythymidine; AZT). This sensitization to AZT is seen both in the presence and the absence of the mutations that confer resistance to AZT. AZT resistance is due to enhanced excision of AZT 5′-monophosphate (AZTMP) from the end of the primer by the RT of the resistant virus. Published data suggest that the excision reaction involves pyrophosphorolysis but that the likely in vivo pyrophosphate donor is not pyrophosphate but ATP. The mutations that lead to AZT resistance enhance ATP binding and, in so doing, enhance pyrophosphorolysis. The excision reaction is specific for AZT because HIV-1 RT, which can form a closed complex with a dideoxy-terminated primer and an incoming deoxynucleoside triphosphate (dNTP), does not form the closed complex with an AZTMP-terminated primer and an incoming dNTP. This means that an AZTMP-terminated primer has better access to the site where it can be excised. The M184V mutation alters the polymerase active site in a fashion that specifically interferes with ATP-mediated excision of AZTMP from the end of the primer strand. The M184V mutation does not affect the incorporation of AZT 5′-triphosphate (AZTTP), either in the presence or the absence of mutations that enhance AZTMP excision. However, in the presence of ATP, the M184V mutation does decrease the ability of HIV-1 RT to carry out AZTMP excision. Based on these results, and on the results of other excision experiments, we present a model to explain how the M184V mutation affects AZTMP excision.


Journal of Virology | 2002

Nucleoside Analog Resistance Caused by Insertions in the Fingers of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Involves ATP-Mediated Excision

Paul L. Boyer; Stefan G. Sarafianos; Edward Arnold; Stephen H. Hughes

ABSTRACT Although anti-human immunodeficiency virus type 1 (HIV-1) therapy has prolonged the lives of patients, drug resistance is a significant problem. Of particular concern are mutations that cause cross-resistance to a particular class of drugs. Among the mutations that cause resistance to several nucleoside analogs are the insertion of amino acids in the fingers subdomain of HIV-1 reverse transcriptase (RT) at positions 69 and 70. These insertions are usually associated with changes in the flanking amino acids and with a change to F or Y at position 215. We have proposed that the T215F/Y mutation makes the binding of ATP to HIV-1 RT more effective, which increases the excision of 3-azido-3′-deoxythymidine-5′-monophosphate (AZTMP) in vitro and increases zidovudine (AZT) resistance in vivo. Although the mechanism of AZT resistance involves enhanced excision, resistance to 3TC involves a block to incorporation of the analog. We measured the effects of fingers insertion mutations on the misincorporation and excision of several nucleoside analogs. RT variants with the amino acid insertions in the fingers and T215Y have a decreased level of misincorporation of ddATP and 3TCTP. These mutants also have the ability to excise AZTMP by ATP-dependent pyrophosphorylysis. However, unlike the classic AZT resistance mutations (M41L/D67N/K70R/T215Y or F/K219E or Q), the combination of the amino acid insertions in the fingers and the T215Y mutation allows efficient excision of ddTMP and d4TMP, even when relatively high levels of deoxynucleoside triphosphates are present in the reaction. Although the dideoxynucleoside analogs of other nucleosides were excised more slowly than AZTMP, ddTMP, and d4TMP, the mutants with the fingers insertion and T215Y excised all of the nucleoside analogs that were tested more efficiently than wild-type RT or a mutant RT carrying the classical AZT resistance mutations. In the ternary complex (RT/template-primer/dNTP), the presence of the bound dNTP prevents the end of the primer from gaining access to the nucleotide binding site (N site) where excision occurs. Gel shift analysis showed that the amino acid insertions in the fingers destabilized the ternary complex compared to wild-type HIV-1 RT. If the ternary complex is unstable, the end of the primer can gain access to the N site and excision can occur. This could explain the enhanced excision of the nucleoside analogs.


Nature Structural & Molecular Biology | 2010

Structural basis of HIV-1 resistance to AZT by excision.

Xiongying Tu; Kalyan Das; Qianwei Han; Joseph D. Bauman; Arthur D. Clark; Xiaorong Hou; Yulia Volovik Frenkel; Barbara L. Gaffney; Roger A. Jones; Paul L. Boyer; Stephen H. Hughes; Stefan G. Sarafianos; Eddy Arnold

Human immunodeficiency virus (HIV-1) develops resistance to 3′-azido-2′,3′-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3′ end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase–double-stranded DNA (RT–dsDNA)–AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT–dsDNA–AZTppppA; AZTr RT–dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.


Journal of Biological Chemistry | 2009

Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance

Kalyan Das; Rajiv P. Bandwar; Kirsten L. White; Joy Y. Feng; Stefan G. Sarafianos; Steven Tuske; Xiongying Tu; Arthur D. Clark; Paul L. Boyer; Xiaorong Hou; Barbara L. Gaffney; Roger A. Jones; Michael D. Miller; Stephen H. Hughes; Eddy Arnold

K65R is a primary reverse transcriptase (RT) mutation selected in human immunodeficiency virus type 1-infected patients taking antiretroviral regimens containing tenofovir disoproxil fumarate or other nucleoside analog RT drugs. We determined the crystal structures of K65R mutant RT cross-linked to double-stranded DNA and in complexes with tenofovir diphosphate (TFV-DP) or dATP. The crystals permit substitution of TFV-DP with dATP at the dNTP-binding site. The guanidinium planes of the arginines K65R and Arg72 were stacked to form a molecular platform that restricts the conformational adaptability of both of the residues, which explains the negative effects of the K65R mutation on nucleotide incorporation and on excision. Furthermore, the guanidinium planes of K65R and Arg72 were stacked in two different rotameric conformations in TFV-DP- and dATP-bound structures that may help explain how K65R RT discriminates the drug from substrates. These K65R-mediated effects on RT structure and function help us to visualize the complex interaction with other key nucleotide RT drug resistance mutations, such as M184V, L74V, and thymidine analog resistance mutations.


Nucleic Acids Research | 2008

Crystal engineering of HIV-1 reverse transcriptase for structure-based drug design

Joseph D. Bauman; Kalyan Das; William C. Ho; Mukta Baweja; Daniel M. Himmel; Arthur D. Clark; Deena A. Oren; Paul L. Boyer; Stephen H. Hughes; Aaron J. Shatkin; Eddy Arnold

HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at ∼2.5–3.0 Å resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 Å resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 Å resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs.

Collaboration


Dive into the Paul L. Boyer's collaboration.

Top Co-Authors

Avatar

Stephen H. Hughes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stefan G. Sarafianos

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Kalyan Das

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur D. Clark

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Eddy Arnold

Center for Advanced Biotechnology and Medicine

View shared research outputs
Top Co-Authors

Avatar

Patrick K. Clark

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor E. Marquez

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jianping Ding

Center for Advanced Biotechnology and Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge