Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul L. Carmichael is active.

Publication


Featured researches published by Paul L. Carmichael.


Environmental Health Perspectives | 2004

Different Levels of Polybrominated Diphenyl Ethers (PBDEs) and Chlorinated Compounds in Breast Milk from Two U.K. Regions

Olga I. Kalantzi; Francis L. Martin; Gareth O. Thomas; Ruth E. Alcock; Huiru R. Tang; Suzanne C. Drury; Paul L. Carmichael; Jeremy K. Nicholson; Kevin C. Jones

Polybrominated diphenyl ether (PBDE) congeners are constituents of flame retardants, and there is growing concern regarding their persistence, bioaccumulation, and toxicity. We collected breast milk samples between late 2001 and early 2003 from 54 U.K.-resident mothers. Of these, 27 originated from southeast England (London), and the other 27 originated from northwest England (Lancaster). Analysis of milk-fat extracts by gas chromatography–mass spectrometry was performed to determine the levels of 15 PBDE congeners, 15 polychlorinated biphenyl (PCB) congeners, and other selected chlorinated compounds. PCB and organochlorine (OC) levels in southeast samples were consistently higher, and significant differences (p < 0.05) were observed. ∑PBDE levels ranged from 0.3 to 69 ng/g lipid (geometric mean, 6.6 ng/g), and PBDE-47 was the most abundant congener. ∑PCB levels ranged from 26 to 530 ng/g lipid (geometric mean, 150 ng/g) and were composed mainly of PCB-153 (26%), PCB-138 (20%), and PCB-180 (13%). OC levels for 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (p,p′-DDT) and its metabolites (∑DDX) ranged from 24 to 2,300 ng/g lipid (geometric mean, 160 ng/g); hexachlorobenzene ranged from nondetectable levels to 180 ng/g lipid (geometric mean, 17 ng/g); and ∑hexachlorocyclohexane levels ranged from 1.2 to 1,500 ng/g lipid (geometric mean, 16 ng/g). Using nuclear magnetic resonance–based metabonomics, samples (n = 7) containing the highest contaminant levels were compared with samples (n = 7) containing the lowest levels. Excellent separation along the first principal component implied that the chemical constituents of the two groups were significantly different. Although reasons for such differences remain obscure, lifestyle factors associated with a more heterogeneous London cohort could be responsible. Identifying primary routes of contaminant exposures and their biologic effects is of great importance.


Analyst | 2012

Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives

Júlio Trevisan; Plamen Angelov; Paul L. Carmichael; Andrew D. Scott; Francis L. Martin

Applying Fourier-transform infrared (FTIR) spectroscopy (or related technologies such as Raman spectroscopy) to biological questions (defined as biospectroscopy) is relatively novel. Potential fields of application include cytological, histological and microbial studies. This potentially provides a rapid and non-destructive approach to clinical diagnosis. Its increase in application is primarily a consequence of developing instrumentation along with computational techniques. In the coming decades, biospectroscopy is likely to become a common tool in the screening or diagnostic laboratory, or even in the general practitioners clinic. Despite many advances in the biological application of FTIR spectroscopy, there remain challenges in sample preparation, instrumentation and data handling. We focus on the latter, where we identify in the reviewed literature, the existence of four main study goals: Pattern Finding; Biomarker Identification; Imaging; and, Diagnosis. These can be grouped into two frameworks: Exploratory; and, Diagnostic. Existing techniques in Quality Control, Pre-processing, Feature Extraction, Clustering, and Classification are critically reviewed. An aspect that is often visited is that of method choice. Based on the state-of-art, we claim that in the near future research should be focused on the challenges of dataset standardization; building information systems; development and validation of data analysis tools; and, technology transfer. A diagnostic case study using a real-world dataset is presented as an illustration. Many of the methods presented in this review are Machine Learning and Statistical techniques that are extendable to other forms of computer-based biomedical analysis, including mass spectrometry and magnetic resonance.


PLOS ONE | 2011

Toxicity Testing in the 21st Century: Defining New Risk Assessment Approaches Based on Perturbation of Intracellular Toxicity Pathways

Sudin Bhattacharya; Qiang Zhang; Paul L. Carmichael; Kim Boekelheide; Melvin E. Andersen

The approaches to quantitatively assessing the health risks of chemical exposure have not changed appreciably in the past 50 to 80 years, the focus remaining on high-dose studies that measure adverse outcomes in homogeneous animal populations. This expensive, low-throughput approach relies on conservative extrapolations to relate animal studies to much lower-dose human exposures and is of questionable relevance to predicting risks to humans at their typical low exposures. It makes little use of a mechanistic understanding of the mode of action by which chemicals perturb biological processes in human cells and tissues. An alternative vision, proposed by the U.S. National Research Council (NRC) report Toxicity Testing in the 21st Century: A Vision and a Strategy, called for moving away from traditional high-dose animal studies to an approach based on perturbation of cellular responses using well-designed in vitro assays. Central to this vision are (a) “toxicity pathways” (the innate cellular pathways that may be perturbed by chemicals) and (b) the determination of chemical concentration ranges where those perturbations are likely to be excessive, thereby leading to adverse health effects if present for a prolonged duration in an intact organism. In this paper we briefly review the original NRC report and responses to that report over the past 3 years, and discuss how the change in testing might be achieved in the U.S. and in the European Union (EU). EU initiatives in developing alternatives to animal testing of cosmetic ingredients have run very much in parallel with the NRC report. Moving from current practice to the NRC vision would require using prototype toxicity pathways to develop case studies showing the new vision in action. In this vein, we also discuss how the proposed strategy for toxicity testing might be applied to the toxicity pathways associated with DNA damage and repair.


Journal of Proteome Research | 2011

Biospectroscopy to metabolically profile biomolecular structure: a multistage approach linking computational analysis with biomarkers.

Jemma G. Kelly; Júlio Trevisan; Andrew D. Scott; Paul L. Carmichael; Hubert M. Pollock; Pierre L. Martin-Hirsch; Francis L. Martin

Biospectroscopy is employed to derive absorbance spectra representative of biomolecules present in biological samples. The mid-infrared region (λ = 2.5 μm-25 μm) is absorbed to give a biochemical-cell fingerprint (v = 1800-900 cm(-1)). Cellular material produces complex spectra due to the variety of chemical bonds present. The complexity and size of spectral data sets warrant multivariate analysis for data reduction, interpretation, and classification. Various multivariate analyses are available including principal component analysis (PCA), partial least-squares (PLS), linear discriminant analysis (LDA), and evolving fuzzy rule-based classifier (eClass). Interpretation of both visual and numerical results facilitates biomarker identification, cell-type discrimination, and predictive and mechanistic understanding of cellular behavior. Biospectroscopy is a high-throughput nondestructive technology. A comparison of biomarkers/mechanistic knowledge determined from conventional approaches to biospectroscopy coupled with multivariate analysis often provides complementary answers and a novel approach for diagnosis of disease and cell biology.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2009

Reduction of use of animals in regulatory genotoxicity testing : Identification and implementation opportunities-Report from an ECVAM workshop

Stefan Pfuhler; David Kirkland; Peter Kasper; Makoto Hayashi; Philippe Vanparys; Paul L. Carmichael; Stephen D. Dertinger; David A. Eastmond; Azeddine Elhajouji; Cyrille Krul; Andreas Rothfuss; Gabriele Schoening; Andrew Smith; Guenter Speit; Claire Thomas; Jan van Benthem; Raffaella Corvi

In vivo genetic toxicology tests measure direct DNA damage or the formation of gene or chromosomal mutations, and are used to predict the mutagenic and carcinogenic potential of compounds for regulatory purposes and/or to follow-up positive results from in vitro testing. These tests are widely used and consume large numbers of animals, with a foreseeable marked increase as a result of the EU chemicals legislation (REACH), which may require follow-up of any positive outcome in the in vitro standard battery with appropriate in vivo tests, regardless of the tonnage level of the chemical. A 2-day workshop with genotoxicity experts from academia, regulatory agencies and industry was hosted by the European Centre for the Validation of Alternative Methods (ECVAM) in Ranco, Italy from 24 to 25 June 2008. The objectives of the workshop were to discuss how to reduce the number of animals in standard genotoxicity tests, whether the application of smarter test strategies can lead to lower animal numbers, and how the possibilities for reduction can be promoted and implemented. The workshop agreed that there are many reduction options available that are scientifically credible and therefore ready for use. Most of these are compliant with regulatory guidelines, i.e. the use of one sex only, one administration and two sampling times versus two or three administrations and one sampling time for micronucleus (MN), chromosomal aberration (CA) and Comet assays; and the integration of the MN endpoint into repeat-dose toxicity studies. The omission of a concurrent positive control in routine CA and MN tests has been proven to be scientifically acceptable, although the OECD guidelines still require this; also the combination of acute MN and Comet assay studies are compliant with guidelines, except for sampling times. Based on the data presented at the workshop, the participants concluded that these options have not been sufficiently utilized to date. Key factors for this seem to be the uncertainty regarding regulatory compliance/acceptance, lack of awareness, and an in many cases unjustified uncertainty regarding the scientific acceptance of reduction options. The workshop therefore encourages the use and promotion of these options as well as the dissemination of data related to reduction opportunities by the scientific community in order to boost the acceptance level of these approaches. Furthermore, experimental proof is needed and under way to demonstrate the credibility of additional options for reduction of the number of animals, such as the integration of the Comet assay into repeat-dose toxicity studies.


Bioinformatics | 2013

IRootLab: a free and open-source MATLAB toolbox for vibrational biospectroscopy data analysis

Júlio Trevisan; Plamen Angelov; Andrew D. Scott; Paul L. Carmichael; Francis L. Martin

SUMMARY IRootLab is a free and open-source MATLAB toolbox for vibrational biospectroscopy (VBS) data analysis. It offers an object-oriented programming class library, graphical user interfaces (GUIs) and automatic MATLAB code generation. The class library contains a large number of methods, concepts and visualizations for VBS data analysis, some of which are introduced in the toolbox. The GUIs provide an interface to the class library, including a module to merge several spectral files into a dataset. Automatic code allows developers to quickly write VBS data analysis scripts and is a unique resource among tools for VBS. Documentation includes a manual, tutorials, Doxygen-generated reference and a demonstration showcase. IRootLab can handle some of the most popular file formats used in VBS. License: GNU-LGPL. AVAILABILITY Official website: http://irootlab.googlecode.com/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Biochimica et Biophysica Acta | 2003

Cellular environment of metabolites and a metabonomic study of tamoxifen in endometrial cells using gradient high resolution magic angle spinning 1H NMR spectroscopy.

Julian L. Griffin; J.C.M Pole; Jeremy K. Nicholson; Paul L. Carmichael

High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy was used to metabolically characterise Ishikawa cells, a human cell line derived from endometrial adenocarcinoma. The spectra obtained had well-resolved resonances from the nucleotide derivatives of uridine and adenosine. Using a combination of diffusion- and relaxation-weighted spectroscopy, the cellular environment of key metabolites previously identified as related to cell growth was also investigated. As Ishikawa cells are hormone-responsive, the metabolic action of tamoxifen, a selective estrogen receptor modulator (SERM), was also investigated. Cells were exposed to 5, 1 and 0.1 microM tamoxifen. Using the statistical regression technique of prediction to latent structures by partial least squares, a predictive model was built modelling the metabolic profile of the cells against exposure to tamoxifen. These spectral changes were characterised by increased resonance intensities from ethanolamine (3.26 ppm), glucose (3.34-3.94 ppm), glutamate (2.14, 2.32 ppm), tyrosine (7.24 ppm), uridine (7.85 ppm) and adenosine (8.20 ppm), and a relative decrease in contributions from myo-inositol resonances (3.30, 3.62, 3.55 ppm). The nucleotide changes suggest that tamoxifen affects RNA transcription, while the changes in ethanolamine and myo-inositol concentrations are indicative of cell membrane turnover.


Mutation Research | 1995

Detection of bulky DNA lesions in the liver of patients with Wilson's disease and primary haemochromatosis

Paul L. Carmichael; Alan Hewer; Martin R. Osborne; Alastair J. Strain; David H. Phillips

In the human metal storage disorders of Wilsons disease and primary haemochromatosis, ion transport and excretion dysfunctions result in the intracellular deposition of copper and iron, respectively. These aberrant accumulations of transition metal ions lead to extensive tissue damage, especially in the liver. In order to investigate the possible role of metal ion-mediated oxygen free radical-generated DNA damage in these processes, DNA was isolated from liver of eight Wilsons disease patients and six haemochromatosis patients. Significant levels of bulky DNA damage were detected in these samples by 32P-postlabelling analysis, but were not found in liver DNA from age-matched controls. This form of novel DNA damage was detected in six out of eight Wilsons patients, varying between approximately 1 and 100 base modifications per 10(8) nucleotides, and in all of the haemochromatosis samples examined; the levels of modified species per 10(8) nucleotides varying from approximately 2 to 50. HPLC analysis of these bulky DNA lesions demonstrated that the species formed in Wilsons disease and in haemochromatosis were chromatographically identical but were not the same as putative purine dimers that can be generated in DNA by in vitro incubation with Cu+/Fe2+ and H2O2 (although the possibility that the adducts detected are closely related has not been ruled out). Analysis of the oxidative base lesion 8-hydroxydeoxyguanosine showed that levels were not elevated in liver DNA from either Wilsons disease or haemochromatosis sufferers. In fact, a statistically significantly lower level of this lesion was found in Wilsons disease patients than in controls. These data suggest that bulky DNA damage present in the liver of both wilsons disease and primary haemochromatosis patients may play a more important role in the induction of tissue damage than 8-hydroxydeoxyguanosine. The novel DNA damage detected by 32P-poslabelling may also be a significant factor in the initiation of neoplasia leading to malignant hepatoma in haemochromatosis patients.


Mutation Research-reviews in Mutation Research | 2008

The carcinoGENOMICS project: Critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays

Mathieu Vinken; Tatyana Y. Doktorova; Heidrun Ellinger-Ziegelbauer; Hans-Jürgen Ahr; Edward A. Lock; Paul L. Carmichael; Erwin Ludo Roggen; Joost H.M. van Delft; Jos Kleinjans; José V. Castell; Roque Bort; Teresa Donato; Michael P. Ryan; Raffaella Corvi; Hector C. Keun; Timothy M. D. Ebbels; Toby J. Athersuch; Susanna-Assunta Sansone; Philippe Rocca-Serra; R.H. Stierum; Paul Jennings; Walter Pfaller; Hans Gmuender; Tamara Vanhaecke; Vera Rogiers

Recent changes in the European legislation of chemical-related substances have forced the scientific community to speed up the search for alternative methods that could partly or fully replace animal experimentation. The Sixth Framework Program project carcinoGENOMICS was specifically raised to develop omics-based in vitro screens for testing the carcinogenic potential of chemical compounds in a pan-European context. This paper provides an in-depth analysis of the complexity of choosing suitable reference compounds used for creating and fine-tuning the in vitro carcinogenicity assays. First, a number of solid criteria for the selection of the model compounds are defined. Secondly, the strategy followed, including resources consulted, is described and the selected compounds are briefly illustrated. Finally, limitations and problems encountered during the selection procedure are discussed. Since selecting an appropriate set of chemicals is a frequent impediment in the early stages of similar research projects, the information provided in this paper might be extremely valuable.


Mutagenesis | 2012

Cell transformation assays for prediction of carcinogenic potential: state of the science and future research needs

Stuart Creton; Marilyn J. Aardema; Paul L. Carmichael; James Harvey; Francis L. Martin; Robert F. Newbold; Michael R. O’Donovan; Kamala Pant; Albrecht Poth; Ayako Sakai; Kiyoshi Sasaki; Andrew D. Scott; Leonard M. Schechtman; Rhine R. Shen; Noriho Tanaka; Hemad Yasaei

Cell transformation assays (CTAs) have long been proposed as in vitro methods for the identification of potential chemical carcinogens. Despite showing good correlation with rodent bioassay data, concerns over the subjective nature of using morphological criteria for identifying transformed cells and a lack of understanding of the mechanistic basis of the assays has limited their acceptance for regulatory purposes. However, recent drivers to find alternative carcinogenicity assessment methodologies, such as the Seventh Amendment to the EU Cosmetics Directive, have fuelled renewed interest in CTAs. Research is currently ongoing to improve the objectivity of the assays, reveal the underlying molecular changes leading to transformation and explore the use of novel cell types. The UK NC3Rs held an international workshop in November 2010 to review the current state of the art in this field and provide directions for future research. This paper outlines the key points highlighted at this meeting.

Collaboration


Dive into the Paul L. Carmichael's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew D. Scott

University of Bedfordshire

View shared research outputs
Top Co-Authors

Avatar

Francis L. Martin

University of Central Lancashire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Hewer

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin Li

University of Bedfordshire

View shared research outputs
Top Co-Authors

Avatar

Yeyejide Adeleye

University of Bedfordshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge