Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul L. Sorgen is active.

Publication


Featured researches published by Paul L. Sorgen.


Journal of Cell Biology | 2007

Phosphorylation at S365 is a gatekeeper event that changes the structure of Cx43 and prevents down-regulation by PKC

Joell L. Solan; Lucrecia Márquez-Rosado; Paul L. Sorgen; Perry J. Thornton; Philip R. Gafken; Paul D. Lampe

Phosphorylation at unspecified sites is known to regulate the life cycle (assembly, gating, and turnover) of the gap junction protein, Cx43. In this paper, we show that Cx43 is phosphorylated on S365 in cultured cells and heart tissue. Nuclear magnetic resonance structural studies of the C-terminal region of Cx43 with an S365D mutation indicate that it forms a different stable conformation than unphosphorylated wild-type Cx43. Immunolabeling with an antibody specific for Cx43 phosphorylated at S365 shows staining on gap junction structures in heart tissue that is lost upon hypoxia when Cx43 is no longer specifically localized to the intercalated disk. Efficient phosphorylation at S368, an important Cx43 channel regulatory event that increases during ischemia or PKC activation, depends on S365 being unphosphorylated. Thus, phosphorylation at S365 can serve a “gatekeeper” function that may represent a mechanism to protect cells from ischemia and phorbol ester-induced down-regulation of channel conductance.


Circulation Research | 2009

Structural and Molecular Mechanisms of Gap Junction Remodeling in Epicardial Border Zone Myocytes following Myocardial Infarction

Fabien Kieken; Nancy Mutsaers; Elena Dolmatova; Kelly Virgil; Andrew L. Wit; Admir Kellezi; Bethany J. Hirst-Jensen; Heather S. Duffy; Paul L. Sorgen

Lateralization of the ventricular gap junction protein connexin 43 (Cx43) occurs in epicardial border zone myocytes following myocardial infarction (MI) and is arrhythmogenic. Alterations in Cx43 protein partners have been hypothesized to play a role in lateralization although mechanisms by which this occurs are unknown. To examine potential mechanisms we did nuclear magnetic resonance, yeast 2-hybrid, and surface plasmon resonance studies and found that the SH3 domain of the tyrosine kinase c-Src binds to the Cx43 scaffolding protein zonula occludens-1 (ZO-1) with a higher affinity than does Cx43. This suggests c-Src outcompetes Cx43 for binding to ZO-1, thus acting as a chaperone for ZO-1 and causing unhooking from Cx43. To determine whether c-Src/ZO-1 interactions affect Cx43 lateralization within the epicardial border zone, we performed Western blot, immunoprecipitation, and immunolocalization for active c-Src (p-cSrc) post-MI using a canine model of coronary occlusion. We found that post-MI p-cSrc interacts with ZO-1 as Cx43 begins to decrease its interaction with ZO-1 and undergo initial loss of intercalated disk localization. This indicates that the molecular mechanisms by which Cx43 is lost from the intercalated disk following MI includes an interaction of p-cSrc with ZO-1 and subsequent loss of scaffolding of Cx43 leaving Cx43 free to diffuse in myocyte membranes from areas of high Cx43, as at the intercalated disk, to regions of lower Cx43 content, the lateral myocyte membrane. Therefore shifts in Cx43 protein partners may underlie, in part, arrhythmogenesis in the post-MI heart.


Journal of Biological Chemistry | 2007

Characterization of the pH-dependent Interaction between the Gap Junction Protein Connexin43 Carboxyl Terminus and Cytoplasmic Loop Domains

Bethany J. Hirst-Jensen; Prangya Sahoo; Fabien Kieken; Mario Delmar; Paul L. Sorgen

A prevailing view regarding the regulation of connexin43 (Cx43) gap junction channels is that, upon intracellular acidification, the carboxyl-terminal domain (Cx43CT) moves toward the channel opening to interact with specific residues acting as a receptor site. Previous studies have demonstrated a direct, pH-dependent interaction between the Cx43CT and a Cx43 cytoplasmic loop (Cx43CL) peptide. This interaction was dependent on α-helical formation for the peptide in response to acidification; more recent studies have shown that acidification also induces Cx43CT dimerization. Whether Cx43CT dimerization is an important structural component in Cx43 regulation remains to be determined. Here we used an assortment of complimentary biophysical techniques to characterize the binding of Cx43CT or its mutants to itself and/or to a more native-like Cx43CL construct (Cx43CL100-155, residues 100-155). Our studies expand the observation that specific Cx43CT domains are important for dimerization. We further show that properties of the Cx43CL100-155 are different from those of the Cx43CL peptide; solvent acidification leads to Cx43CL100-155 oligomerization and a change in the stoichiometry and binding affinity for the Cx43CT. Homo-Cx43CT and Cx43CL100-155 oligomerization as well as the Cx43CT/Cx43CL100-155 interaction can occur under in vivo conditions; moreover, we show that Cx43CL100-155 strongly affects resonance peaks corresponding to Cx43CT residues Arg-376—Asp-379 and Asn-343—Lys-346. Overall, our data indicate that many of the sites involved in Cx43CT dimerization are also involved in the Cx43CT/Cx43CL interaction; we further propose that chemically induced Cx43CT and Cx43CL oligomerization is important for the interaction between these cytoplasmic domains, which leads to chemically induced gating of Cx43 channels.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Gap Junction Protein Cx37 Interacts With Endothelial Nitric Oxide Synthase in Endothelial Cells

Anna Pfenniger; Jean-Paul Derouette; Vandana Verma; Xianming Lin; Bernard Foglia; Wanda Coombs; Isabelle Roth; Nathalie Satta; Sylvie Dunoyer-Geindre; Paul L. Sorgen; Steven M. Taffet; Brenda R. Kwak; Mario Delmar

Objective—The gap junction protein connexin37 (Cx37) plays an important role in cell-cell communication in the vasculature. A C1019T Cx37 gene polymorphism, encoding a P319S substitution in the regulatory C terminus of Cx37 (Cx37CT), correlates with arterial stenosis and myocardial infarction in humans. This study was designed to identify potential binding partners for Cx37CT and to determine whether the polymorphism modified this interaction. Methods and Results—Using a high-throughput phage display, we retrieved 2 binding motifs for Cx37CT: WHK … [K,R]XP … and FHK … [K,R]XXP …, the first being more common for Cx37CT-319P and the second more common for Cx37CT-319S. One of the peptides (WHRTPRLPPPVP) showed 77.7% homology with residues 843 to 854 of endothelial nitric oxide synthase (eNOS). In vitro binding of this peptide or of the homologous eNOS sequence to both Cx37CT isoforms was confirmed by cross-linking and surface plasmon resonance. Electrophysiological analysis of Cx37 single channel activity in transfected N2a cells showed that eNOS-like and eNOS(843–854) increased the frequency of events with conductances higher than 300 pS. We demonstrated that eNOS coimmunoprecipitated with Cx37 in a mouse endothelial cell (EC) line (bEnd.3), human primary ECs, and a human EC line transfected with Cx37-319P or Cx37-319S. Cx37 and eNOS colocalized at EC membranes. Moreover, a dose-dependent increase in nitric oxide production was observed in ECs treated with Cx37 antisense. Conclusion—Overall, our data show for the first time a functional and specific interaction between eNOS and Cx37. This interaction may be relevant for the control of vascular physiology both in health and in disease.


Molecular Biology of the Cell | 2009

Eps15 Homology Domain 1-associated Tubules Contain Phosphatidylinositol-4-Phosphate and Phosphatidylinositol-(4,5)-Bisphosphate and Are Required for Efficient Recycling

Marko Jović; Fabien Kieken; Naava Naslavsky; Paul L. Sorgen; Steve Caplan

The C-terminal Eps15 homology domain (EHD) 1/receptor-mediated endocytosis-1 protein regulates recycling of proteins and lipids from the recycling compartment to the plasma membrane. Recent studies have provided insight into the mode by which EHD1-associated tubular membranes are generated and the mechanisms by which EHD1 functions. Despite these advances, the physiological function of these striking EHD1-associated tubular membranes remains unknown. Nuclear magnetic resonance spectroscopy demonstrated that the Eps15 homology (EH) domain of EHD1 binds to phosphoinositides, including phosphatidylinositol-4-phosphate. Herein, we identify phosphatidylinositol-4-phosphate as an essential component of EHD1-associated tubules in vivo. Indeed, an EHD1 EH domain mutant (K483E) that associates exclusively with punctate membranes displayed decreased binding to phosphatidylinositol-4-phosphate and other phosphoinositides. Moreover, we provide evidence that although the tubular membranes to which EHD1 associates may be stabilized and/or enhanced by EHD1 expression, these membranes are, at least in part, pre-existing structures. Finally, to underscore the function of EHD1-containing tubules in vivo, we used a small interfering RNA (siRNA)/rescue assay. On transfection, wild-type, tubule-associated, siRNA-resistant EHD1 rescued transferrin and beta1 integrin recycling defects observed in EHD1-depleted cells, whereas expression of the EHD1 K483E mutant did not. We propose that phosphatidylinositol-4-phosphate is an essential component of EHD1-associated tubules that also contain phosphatidylinositol-(4,5)-bisphosphate and that these structures are required for efficient recycling to the plasma membrane.


Journal of Biological Chemistry | 2007

EHD1 and Eps15 Interact with Phosphatidylinositols via Their Eps15 Homology Domains

Naava Naslavsky; Juliati Rahajeng; Sylvie Chenavas; Paul L. Sorgen; Steve Caplan

The C-terminal Eps15 homology domain-containing protein, EHD1, regulates the recycling of receptors from the endocytic recycling compartment to the plasma membrane. In cells, EHD1 localizes to tubular and spherical recycling endosomes. To date, the mode by which EHD1 associates with endosomal membranes remains unknown, and it has not been determined whether this interaction is direct or via interacting proteins. Here, we provide evidence demonstrating that EHD1 has the ability to bind directly and preferentially to an array of phospholipids, preferring phosphatidylinositols with a phosphate at position 3. Previous studies have demonstrated that EH domains coordinate calcium binding and interact with proteins containing the tripeptide asparagine-proline-phenylalanine (NPF). Using two-dimensional nuclear magnetic resonance analysis, we now describe a new function for the Eps15 homology (EH) domain of EHD1 and show that it is capable of directly binding phosphatidylinositol moieties. Moreover, we have expanded our studies to include the C-terminal EH domain of EHD4 and the second of the three N-terminal EH domains of Eps15 and demonstrated that phosphatidylinositol binding may be a more general property shared by certain other EH domains. Further studies identified a positively charged lysine residue (Lys-483) localized within the third helix of the EH domain, on the opposite face of the NPF-binding pocket, as being critical for the interaction with the phosphatidylinositols.


Journal of Biological Chemistry | 2007

The Gap Junction Protein Connexin32 Interacts with the Src Homology 3/Hook Domain of Discs Large Homolog 1

Heather S. Duffy; Ionela Iacobas; Kylie Hotchkiss; Bethany J. Hirst-Jensen; Alejandra Bosco; Nadine Dandachi; Rolf Dermietzel; Paul L. Sorgen; David C. Spray

Scaffolding of membrane proteins is a common strategy for forming complexes of proteins, including some connexins, within membrane microdomains. Here we describe studies indicating that Cx32 interacts with a PDZ-containing scaffolding protein, Dlgh1 (Discs Large homolog 1). Initial screens of liver lysates using antibody arrays indicated an interaction between Cx32 and Dlgh1 that was confirmed using coimmunoprecipitation studies. Yeast two-hybrid complementation determined that the Cx32 bound via interaction with the SH3/Hook domain of Dlgh1. Confocal microscopy of liver sections revealed that Cx32 and Dlgh1 could colocalize in hepatocyte membranes in wild type mice. Examination of levels and localization of Dlgh1 in livers from Cx32 null mice indicate that, in the absence of Cx32, Dlgh1 was decreased, and the remainder was translocated from the hepatocyte membrane to the nucleus with some remaining in cytoplasmic compartments. This translocation was confirmed by Western blots comparing Dlgh1 levels in nuclear extracts from wild type and Cx32 null murine livers. Using SKHep cells stably transfected with Cx32 under the control of a tet-off promoter, we found that acute removal of Cx32 led to a decrease of membrane-localized Dlgh1 and an increase in the nuclear localization of this tumor suppressor protein. Together, these results suggest that loss of Cx32 alters the levels, localization, and interactions of the tumor suppressor protein Dlgh1, events known in other systems to alter cell cycle and increase tumorigenicity.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation

Elena Dolmatova; Gaelle Spagnol; Daniela Boassa; Jennifer R. Baum; Kimberly Keith; Cinzia Ambrosi; Maria I. Kontaridis; Paul L. Sorgen; Gina E. Sosinsky; Heather S. Duffy

Fibrosis following myocardial infarction is associated with increases in arrhythmias and sudden cardiac death. Initial steps in the development of fibrosis are not clear; however, it is likely that cardiac fibroblasts play an important role. In immune cells, ATP release from pannexin 1 (Panx1) channels acts as a paracrine signal initiating activation of innate immunity. ATP has been shown in noncardiac systems to initiate fibroblast activation. Therefore, we propose that ATP release through Panx1 channels and subsequent fibroblast activation in the heart drives the development of fibrosis in the heart following myocardial infarction. We identified for the first time that Panx1 is localized within sarcolemmal membranes of canine cardiac myocytes where it directly interacts with the postsynaptic density 95/Drosophila disk large/zonula occludens-1-containing scaffolding protein synapse-associated protein 97 via its carboxyl terminal domain (amino acids 300-357). Induced ischemia rapidly increased glycosylation of Panx1, resulting in increased trafficking to the plasma membrane as well as increased interaction with synapse-associated protein 97. Cellular stress enhanced ATP release from myocyte Panx1 channels, which, in turn, causes fibroblast transformation to the activated myofibroblast phenotype via activation of the MAPK and p53 pathways, both of which are involved in the development of cardiac fibrosis. ATP release through Panx1 channels in cardiac myocytes during ischemia may be an early paracrine event leading to profibrotic responses to ischemic cardiac injury.


Journal of Biological Chemistry | 2009

Characterization of the Structure and Intermolecular Interactions between the Connexin40 and Connexin43 Carboxyl-terminal and Cytoplasmic Loop Domains

Denis Bouvier; Gaelle Spagnol; Sylvie Chenavas; Fabien Kieken; Heidi Vitrac; Sarah Brownell; Admir Kellezi; Vincent Forge; Paul L. Sorgen

Gap junctions are intercellular channels that allow the passage of ions, small molecules, and second messengers that are essential for the coordination of cellular function. They are formed by two hemichannels, each constituted by the oligomerization of six connexins (Cx). Among the 21 different human Cx isoforms, studies have suggested that in the heart, Cx40 and Cx43 can oligomerize to form heteromeric hemichannels. The mechanism of heteromeric channel regulation has not been clearly defined. Tissue ischemia leads to intracellular acidification and closure of Cx43 and Cx40 homomeric channels. However, coexpression of Cx40 and Cx43 in Xenopus oocytes enhances the pH sensitivity of the channel. This phenomenon requires the carboxyl-terminal (CT) part of both connexins. In this study we used different biophysical methods to determine the structure of the Cx40CT and characterize the Cx40CT/Cx43CT interaction. Our results revealed that the Cx40CT is an intrinsically disordered protein similar to the Cx43CT and that the Cx40CT and Cx43CT can interact. Additionally, we have identified an interaction between the Cx40CT and the cytoplasmic loop of Cx40 as well as between the Cx40CT and the cytoplasmic loop of Cx43 (and vice versa). Our studies support the “particle-receptor” model for pH gating of Cx40 and Cx43 gap junction channels and suggest that interactions between cytoplasmic regulatory domains (both homo- and hetero-connexin) could be important for the regulation of heteromeric channels.


Circulation Research | 2006

Identification of a Novel Peptide That Interferes With the Chemical Regulation of Connexin43

Junko Shibayama; Rebecca Lewandowski; Fabien Kieken; Wanda Coombs; Sejal S. Shah; Paul L. Sorgen; Steven M. Taffet; Mario Delmar

The carboxyl-terminal domain of connexin43 (Cx43CT) is involved in various intra- and intermolecular interactions that regulate gap junctions. Here, we used phage display to identify novel peptidic sequences that bind Cx43CT and modify Cx43 regulation. We found that Cx43CT binds preferentially to peptides containing a sequence RXP, where X represents any amino acid and R and P correspond to the amino acids arginine and proline, respectively. A biased “RXP library” led to the identification of a peptide (dubbed “RXP-E”) that bound Cx43CT with high affinity. Nuclear magnetic resonance data showed RXP-E–induced shifts in the resonance peaks of residues 343 to 346 and 376 to 379 of Cx43CT. Patch-clamp studies revealed that RXP-E partially prevented octanol-induced and acidification-induced uncoupling in Cx43-expressing cells. Moreover, RXP-E increased mean open time of Cx43 channels. The full effect of RXP-E was dependent on the integrity of the CT domain. These data suggest that RXP-based peptides could serve as tools to help determine the role of Cx43 as a regulator of function in conditions such as ischemia-induced arrhythmias.

Collaboration


Dive into the Paul L. Sorgen's collaboration.

Top Co-Authors

Avatar

Fabien Kieken

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gaelle Spagnol

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steve Caplan

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naava Naslavsky

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Kopanic

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rosslyn Grosely

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Admir Kellezi

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge