Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul LaBarre is active.

Publication


Featured researches published by Paul LaBarre.


Lab on a Chip | 2008

Towards non- and minimally instrumented, microfluidics-based diagnostic devices

Bernhard H. Weigl; Gonzalo J. Domingo; Paul LaBarre; Jay Gerlach

In many health care settings, it is uneconomical, impractical, or unaffordable to maintain and access a fully equipped diagnostics laboratory. Examples include home health care, developing-country health care, and emergency situations in which first responders are dealing with pandemics or biowarfare agent release. In those settings, fully disposable diagnostic devices that require no instrument support, reagent, or significant training are well suited. Although the only such technology to have found widespread adoption so far is the immunochromatographic rapid assay strip test, microfluidics holds promise to expand the range of assay technologies that can be performed in formats similar to that of a strip test. In this paper, we review progress toward development of disposable, low-cost, easy-to-use microfluidics-based diagnostics that require no instrument at all. We also present examples of microfluidic functional elements--including mixers, separators, and detectors--as well as complete microfluidic devices that function entirely without any moving parts and external power sources.


PLOS ONE | 2011

A Simple, Inexpensive Device for Nucleic Acid Amplification without Electricity—Toward Instrument-Free Molecular Diagnostics in Low-Resource Settings

Paul LaBarre; Kenneth Hawkins; Jay Gerlach; Jared Wilmoth; Andrew Beddoe; Jered Singleton; David S. Boyle; Bernhard H. Weigl

Background Molecular assays targeted to nucleic acid (NA) markers are becoming increasingly important to medical diagnostics. However, these are typically confined to wealthy, developed countries; or, to the national reference laboratories of developing-world countries. There are many infectious diseases that are endemic in low-resource settings (LRS) where the lack of simple, instrument-free, NA diagnostic tests is a critical barrier to timely treatment. One of the primary barriers to the practicality and availability of NA assays in LRS has been the complexity and power requirements of polymerase chain reaction (PCR) instrumentation (another is sample preparation). Methodology/Principal Findings In this article, we investigate the hypothesis that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays. We assess the heaters equivalence to commercially available PCR instruments through the characterization of the temperature profiles produced, and a minimal method comparison. Versions of the prototype for several different isothermal techniques are presented. Conclusions/Significance We demonstrate that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays, and that the results of those assays are not significantly different from ones incubated in parallel in commercially available PCR instruments. These results clearly suggest the potential of the non-instrumented nucleic acid amplification (NINA) heater for molecular diagnostics in LRS. When combined with other innovations in development that eliminate power requirements for sample preparation, cold reagent storage, and readout, the NINA heater will comprise part of a kit that should enable electricity-free NA testing for many important analytes.


PLOS ONE | 2012

Isothermal Amplification Using a Chemical Heating Device for Point-of-Care Detection of HIV-1

Kelly A. Curtis; Donna L. Rudolph; Irene Nejad; Jered Singleton; Andy Beddoe; Bernhard H. Weigl; Paul LaBarre; S. Michele Owen

Background To date, the use of traditional nucleic acid amplification tests (NAAT) for detection of HIV-1 DNA or RNA has been restricted to laboratory settings due to time, equipment, and technical expertise requirements. The availability of a rapid NAAT with applicability for resource-limited or point-of-care (POC) settings would fill a great need in HIV diagnostics, allowing for timely diagnosis or confirmation of infection status, as well as facilitating the diagnosis of acute infection, screening and evaluation of infants born to HIV-infected mothers. Isothermal amplification methods, such as reverse-transcription, loop-mediated isothermal amplification (RT-LAMP), exhibit characteristics that are ideal for POC settings, since they are typically quicker, easier to perform, and allow for integration into low-tech, portable heating devices. Methodology/Significant Findings In this study, we evaluated the HIV-1 RT-LAMP assay using portable, non-instrumented nucleic acid amplification (NINA) heating devices that generate heat from the exothermic reaction of calcium oxide and water. The NINA heating devices exhibited stable temperatures throughout the amplification reaction and consistent amplification results between three separate devices and a thermalcycler. The performance of the NINA heaters was validated using whole blood specimens from HIV-1 infected patients. Conclusion The RT-LAMP isothermal amplification method used in conjunction with a chemical heating device provides a portable, rapid and robust NAAT platform that has the potential to facilitate HIV-1 testing in resource-limited settings and POC.


PLOS ONE | 2014

Non-Instrumented Incubation of a Recombinase Polymerase Amplification Assay for the Rapid and Sensitive Detection of Proviral HIV-1 DNA

Lorraine Lillis; Dara A. Lehman; Mitra Singhal; Jason Cantera; Jered Singleton; Paul LaBarre; Anthony Toyama; Olaf Piepenburg; Mathew Parker; Robert Wood; Julie Overbaugh; David S. Boyle

Sensitive diagnostic tests for infectious diseases often employ nucleic acid amplification technologies (NAATs). However, most NAAT assays, including many isothermal amplification methods, require power-dependent instrumentation for incubation. For use in low resource settings (LRS), diagnostics that do not require consistent electricity supply would be ideal. Recombinase polymerase amplification (RPA) is an isothermal amplification technology that has been shown to typically work at temperatures ranging from 25–43°C, and does not require a stringent incubation temperature for optimal performance. Here we evaluate the ability to incubate an HIV-1 RPA assay, intended for use as an infant HIV diagnostic in LRS, at ambient temperatures or with a simple non-instrumented heat source. To determine the range of expected ambient temperatures in settings where an HIV-1 infant diagnostic would be of most use, a dataset of the seasonal range of daily temperatures in sub Saharan Africa was analyzed and revealed ambient temperatures as low as 10°C and rarely above 43°C. All 24 of 24 (100%) HIV-1 RPA reactions amplified when incubated for 20 minutes between 31°C and 43°C. The amplification from the HIV-1 RPA assay under investigation at temperatures was less consistent below 30°C. Thus, we developed a chemical heater to incubate HIV-1 RPA assays when ambient temperatures are between 10°C and 30°C. All 12/12 (100%) reactions amplified with chemical heat incubation from ambient temperatures of 15°C, 20°C, 25°C and 30°C. We also observed that incubation at 30 minutes improved assay performance at lower temperatures where detection was sporadic using 20 minutes incubation. We have demonstrated that incubation of the RPA HIV-1 assay via ambient temperatures or using chemical heaters yields similar results to using electrically powered devices. We propose that this RPA HIV-1 assay may not need dedicated equipment to be a highly sensitive tool to diagnose infant HIV-1 in LRS.


Malaria Journal | 2015

Evaluation of non-instrumented nucleic acid amplification by loop-mediated isothermal amplification (NINA-LAMP) for the diagnosis of malaria in Northwest Ethiopia

Meslo Sema; Abebe Alemu; Abebe Genetu Bayih; Sisay Getie; Gebeyaw Getnet; Dylan Guelig; Robert Burton; Paul LaBarre; Dylan R. Pillai

BackgroundMalaria is a major public health problem in sub-Saharan African countries including Ethiopia. Early and accurate diagnosis followed by prompt and effective treatment is among the various tools available for prevention, control and elimination of malaria. This study aimed to evaluate the performance of non-instrumented nucleic acid amplification loop-mediated isothermal amplification (NINA-LAMP) compared to standard thick and thin film microscopy and nested PCR as gold standard for the sensitive diagnosis of malaria in Northwest Ethiopia.MethodsA cross-sectional study was conducted in North Gondar, Ethiopia from March to July 2014. Eighty-two blood samples were collected from malaria suspected patients visiting Kola Diba Health Centre and analysed for Plasmodium parasites by microscopy, NINA-LAMP and nested PCR. The NINA-LAMP method was performed using the Loopamp™ Malaria Pan/Pf detection kits for detecting DNA of the genus Plasmodium and more specifically Plasmodium falciparum using an electricity-free heater. Diagnostic accuracy outcome measures (analytical sensitivity, specificity, predictive values, and Kappa scores) of NINA-LAMP and microscopy were compared to nested PCR.ResultsA total of 82 samples were tested in the primary analysis. Using nested PCR as reference, the sensitivity and specificity of the primary NINA-LAMP assay were 96.8% (95% confidence interval (CI), 83.2% - 99.5%) and 84.3% (95% CI, 71.4% - 92.9%), respectively for detection of Plasmodium genus, and 100% (95% CI, 75.1% - 100%) and 81.2% (95% CI, 69.9% - 89.6%), respectively for detection of P. falciparum parasite. Microscopy demonstrated sensitivity and specificity of 93.6% (95% CI, 78.5% - 99.0%) and 98.0% (95% CI, 89.5% - 99.7%), respectively for the detection of Plasmodium parasites. Post-hoc repeat NINA-LAMP analysis showed improvement in diagnostic accuracy, which was comparable to nested PCR performance and superior to microscopy for detection at both the Plasmodium genus level and P. falciparum parasites.ConclusionNINA-LAMP is highly sensitive for the diagnosis of malaria and detection of Plasmodium parasite infection at both the genus and species level when compared to nested PCR. NINA-LAMP is more sensitive than microscopy for the detection of P. falciparum and differentiation from non-falciparum species and may be a critical diagnostic modality in efforts to eradicate malaria from areas of low endemicity.


Trends in Parasitology | 2014

The essential role of infection-detection technologies for malaria elimination and eradication

Kathleen Tietje; Kenneth Hawkins; Christine Clerk; Kelly Ebels; Sarah McGray; Chris Crudder; Lucy C. Okell; Paul LaBarre

Recent emphasis on malaria elimination and eradication (E&E) goals is changing the way that experts evaluate malaria diagnostic tools and tactics. As prevalence declines, the focus of malaria management is pivoting toward low-density, subclinical infections and geographically and demographically concentrated reservoirs. These and other changes present challenges and opportunities for innovations in malaria diagnostics aimed at meeting the needs of malaria elimination programs. Developing such technologies requires a review of the operational approaches to detecting malaria infections in areas of declining prevalence. Here we review recent research on epidemiology and biology related to malaria elimination and operational factors that influence E&E strategies. We further propose use-scenarios and a target product profile framework to define and prioritize the required attributes of infection-detection technologies.


PLOS ONE | 2014

Electricity-Free Amplification and Detection for Molecular Point-of-Care Diagnosis of HIV-1

Jered Singleton; Jennifer L. Osborn; Lorraine Lillis; Kenneth Hawkins; Dylan Guelig; Will Price; Rachel Johns; Kelly Ebels; David S. Boyle; Bernhard H. Weigl; Paul LaBarre

In resource-limited settings, the lack of decentralized molecular diagnostic testing and sparse access to centralized medical facilities can present a critical barrier to timely diagnosis, treatment, and subsequent control and elimination of infectious diseases. Isothermal nucleic acid amplification methods, including reverse transcription loop-mediated isothermal amplification (RT-LAMP), are well-suited for decentralized point-of-care molecular testing in minimal infrastructure laboratories since they significantly reduce the complexity of equipment and power requirements. Despite reduced complexity, however, there is still a need for a constant heat source to enable isothermal nucleic acid amplification. This requirement poses significant challenges for laboratories in developing countries where electricity is often unreliable or unavailable. To address this need, we previously developed a low-cost, electricity-free heater using an exothermic reaction thermally coupled with a phase change material. This heater achieved acceptable performance, but exhibited considerable variability. Furthermore, as an enabling technology, the heater was an incomplete diagnostic solution. Here we describe a more precise, affordable, and robust heater design with thermal standard deviation <0.5°C at operating temperature, a cost of approximately US


international conference of the ieee engineering in medicine and biology society | 2010

Non-instrumented nucleic acid amplification (NINA): Instrument-free molecular malaria diagnostics for low-resource settings

Paul LaBarre; Jay Gerlach; Jared Wilmoth; Andrew Beddoe; Jered Singleton; Bernhard H. Weigl

.06 per test for heater reaction materials, and an ambient temperature operating range from 16°C to 30°C. We also pair the heater with nucleic acid lateral flow (NALF)-detection for a visual readout. To further illustrate the utility of the electricity-free heater and NALF-detection platform, we demonstrate sensitive and repeatable detection of HIV-1 with a ß-actin positive internal amplification control from processed sample to result in less than 80 minutes. Together, these elements are building blocks for an electricity-free platform capable of isothermal amplification and detection of a variety of pathogens.


World Journal of Surgery | 2015

Assessment of the availability of technology for trauma care in India

Mihir Tejanshu Shah; Manjul Joshipura; Jered Singleton; Paul LaBarre; Hem Desai; Eliza Sharma; Charles Mock

We have achieved the first complete, non-instrumented nucleic acid amplification test (NAAT) using a calcium oxide heat source thermally linked to an engineered phase change material. These two components alone maintain a thermal profile suitable for the loop-mediated isothermal amplification assay. Starting with computational fluid dynamics analysis, we identified nominal geometry for the exothermic reaction chamber, phase change material chamber, thermal insulation, and packaging. Using this model, we designed and fabricated an alpha prototype assay platform. We have verified the function of this multi-pathogen-capable platform with both fluorescent and visual turbidity indications using samples spiked with malaria DNA. Both the exothermically heated platform samples and samples heated on a Perkin-Elmer GeneAmp9600 thermocycler were first incubated at 62°C for 45 minutes, then heated to 95°C to terminate enzyme activity, then analyzed. Results from the exothermically heated, non-instrumented platform were comparable to those from the thermocycler. These developments will enable point-of-care diagnostics using accurate NAATs which until now have required a well-equipped laboratory. The aim of this research is to provide pathogen detection with NAAT-level sensitivity in low-resource settings where assays such as immunochromatographic strip tests are successfully used but where there is no access to the infrastructure and logistics required to operate and maintain instrument-based diagnostics.


American Journal of Tropical Medicine and Hygiene | 2017

Performance of a High-Sensitivity Rapid Diagnostic Test for Plasmodium falciparum Malaria in Asymptomatic Individuals from Uganda and Myanmar and Naive Human Challenge Infections

Smita Das; Ihn Kyung Jang; Becky Barney; Roger Peck; John Rek; Emmanuel Arinaitwe; Harriet Adrama; Maxwell Murphy; Mallika Imwong; Clare Ling; Stephane Proux; Warat Haohankhunnatham; Melissa Rist; Annette M. Seilie; Amelia E. Hanron; Glenda Daza; Ming Chang; Tomoka Nakamura; Michael Kalnoky; Paul LaBarre; Sean C. Murphy; James S. McCarthy; François Nosten; Bryan Greenhouse; Sophie Allauzen; Gonzalo J. Domingo

BackgroundWe sought to assess the status of availability of technology for trauma care in a state in India and to identify factors contributing to both adequate levels of availability and to deficiencies. We also sought to identify potential solutions to deficiencies in terms of health system management and product development.MethodsThirty-two technology-related items were selected from the World Health Organization’s Guidelines for Essential Trauma Care. The status of these items was assessed at 43 small and large hospitals in Gujarat State. Site visits utilized direct inspection and interviews with administrative, clinical, and bioengineering staff.ResultsMany specific individual items could be better supplied, including many that were very low cost (e.g., chest tubes). Many deficiencies arose because of mismatch of resources, such as availability of equipment in the absence of personnel trained to use it. Several locally manufactured items were fairly well supplied: pulse oximetry, image intensification, and X-ray machines. Ventilators were often deficient because of inadequate numbers of units and frequent breakdowns.ConclusionsAvailability of a range of lower-cost items could be improved by better organization and planning, such as: better procurement and stock management; eliminating mismatch of resources, including optimizing training for use of existing resources; and by strengthening service contracts and in-house repair capabilities. From a product development viewpoint, there is a need for lower cost, more durable, and easier to repair ventilators. Promoting increased capacity for local manufacturing should also be considered as a potential method to decrease cost and increase availability of a range of equipment.

Researchain Logo
Decentralizing Knowledge