Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Lemmer is active.

Publication


Featured researches published by Paul Lemmer.


Biotechnology Journal | 2009

Dual color localization microscopy of cellular nanostructures

Manuel Gunkel; Fabian Erdel; Karsten Rippe; Paul Lemmer; Rainer Kaufmann; Christoph Hörmann; Roman Amberger; Christoph Cremer

The dual color localization microscopy (2CLM) presented here is based on the principles of spectral precision distance microscopy (SPDM) with conventional autofluorescent proteins under special physical conditions. This technique allows us to measure the spatial distribution of single fluorescently labeled molecules in entire cells with an effective optical resolution comparable to macromolecular dimensions. Here, we describe the application of the 2CLM approach to the simultaneous nanoimaging of cellular structures using two fluorochrome types distinguished by different fluorescence emission wavelengths. The capabilities of 2CLM for studying the spatial organization of the genome in the mammalian cell nucleus are demonstrated for the relative distributions of two chromosomal proteins labeled with autofluorescent GFP and mRFP1 domains. The 2CLM images revealed quantitative information on their spatial relationships down to length‐scales of 30 nm.


Journal of Microscopy | 2009

Using conventional fluorescent markers for far-field fluorescence localization nanoscopy allows resolution in the 10-nm range

Paul Lemmer; Manuel Gunkel; Yanina Weiland; Patrick Müller; David Baddeley; Rainer Kaufmann; A. Urich; Heinz Eipel; Roman Amberger; Michael Hausmann; Christoph Cremer

We present a novel technique of far‐field localization nanoscopy combining spectral precision distance microscopy with widely used fluorochromes like the Green Fluorescent Protein (GFP) derivatives eGFP, EmGFP, Yellow Fluorescent Protein (YFP) and eYFP, synthetic dyes like Alexa 488 and Alexa 568, as well as fluoresceine derivates. Spectral precision distance microscopy allows the surpassing of conventional resolution limits in fluorescence far‐field microscopy by precise object localization after the optical isolation of single signals in time. Based on the principles of this technique, our novel nanoscopic method was realized for laser optical precision localization and image reconstruction with highly enhanced optical resolution in intact cells. This allows for spatial assignment of individual fluorescent molecules with nanometre precision. The technique is based on excitation intensity dependent reversible photobleaching of the molecules used combined with fast time sequential imaging under appropriate focusing conditions. A meaningful advantage of the technique is the simple applicability as a universal tool for imaging and investigations to the major part of already available preparations according to standard protocols. Using the above mentioned fluorophores, the positions of single molecules within cellular structures were determined by visible light with an estimated localization precision down to 3 nm; hence distances in the range of 10–30 nm were resolved between individual fluorescent molecules allowing to apply different quantitative structure analysis tools.


Chromosome Research | 2008

High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy

Jürgen Reymann; David Baddeley; Manuel Gunkel; Paul Lemmer; Werner Stadter; Thibaud Jegou; Karsten Rippe; Christoph Cremer; Udo Birk

Spatially modulated illumination (SMI) microscopy is a method of wide field fluorescence microscopy featuring interferometric illumination, which delivers structural information about nanoscale architecture in fluorescently labelled cells. The first prototype of the SMI microscope proved its applicability to a wide range of biological questions. For the SMI live cell imaging this system was enhanced in terms of the development of a completely new upright configuration. This so called Vertico-SMI transfers the advantages of SMI nanoscaling to vital biological systems, and is shown to work consistently at different temperatures using both oil- and water-immersion objective lenses. Furthermore, we increased the speed of data acquisition to minimize errors in the detection signal resulting from cellular or object movement. By performing accurate characterization, the present Vertico-SMI now offers a fully-fledged microscope enabling a complete three-dimensional (3D) SMI data stack to be acquired in less than 2 seconds. We have performed live cell measurements of a tet-operator repeat insert in U2OS cells, which provided the first in vivo signatures of subnuclear complexes. Furthermore, we have successfully implemented an optional optical configuration allowing the generation of high-resolution localization microscopy images of a nuclear pore complex distribution.


Biophysical Journal | 2010

Localization Microscopy Reveals Expression-Dependent Parameters of Chromatin Nanostructure

Manfred Bohn; Philipp M. Diesinger; Rainer Kaufmann; Yanina Weiland; Patrick Müller; Manuel Gunkel; Alexa von Ketteler; Paul Lemmer; Michael Hausmann; Dieter W. Heermann; Christoph Cremer

A combined approach of 2D high-resolution localization light microscopy and statistical methods is presented to infer structural features and density fluctuations at the nuclear nanoscale. Hallmarks of nuclear nanostructure are found on the scale below 100 nm for both human fibroblast and HeLa cells. Mechanical measures were extracted as a quantitative tool from the histone density fluctuations inside the cell to obtain structural fluctuations on the scale of several micrometers. Results show that different mechanisms of expression of the same nuclear protein type lead to significantly different patterns on the nanoscale and to pronounced differences in the detected compressibility of chromatin. The observed fluctuations, including the experimental evidence for dynamic looping, are consistent with a recently proposed chromatin model.


Biotechnology Journal | 2011

Superresolution imaging of biological nanostructures by spectral precision distance microscopy

Christoph Cremer; Rainer Kaufmann; Manuel Gunkel; Sebastian Pres; Yanina Weiland; Patrick Müller; Thomas Ruckelshausen; Paul Lemmer; Fania Geiger; Sven Degenhard; Christina Wege; Niels A. W. Lemmermann; Rafaela Holtappels; Hilmar Strickfaden; Michael Hausmann

For the improved understanding of biological systems on the nanoscale, it is necessary to enhance the resolution of light microscopy in the visible wavelength range beyond the limits of conventional epifluorescence microscopy (optical resolution of about 200 nm laterally, 600 nm axially). Recently, various far‐field methods have been developed allowing a substantial increase of resolution (“superresolution microscopy”, or “lightoptical nanoscopy”). This opens an avenue to ‘nano‐image’ intact and even living cells, as well as other biostructures like viruses, down to the molecular detail. Thus, it is possible to combine light optical spatial nanoscale information with ultrastructure analyses and the molecular interaction information provided by molecular cell biology. In this review, we describe the principles of spectrally assigned localization microscopy (SALM) of biological nanostructures, focusing on a special SALM approach, spectral precision distance/position determination microscopy (SPDM) with physically modified fluorochromes (SPDMPhymod. Generally, this SPDM method is based on high‐precision localization of fluorescent molecules, which can be discriminated using reversibly bleached states of the fluorophores for their optical isolation. A variety of application examples is presented, ranging from superresolution microscopy of membrane and cytoplasmic protein distribution to dual‐color SPDM of nuclear proteins. At present, we can achieve an optical resolution of cellular structures down to the 20‐nm range, with best values around 5 nm (∼1/100 of the exciting wavelength).


Single Molecule Spectroscopy and Imaging II | 2009

SPDM: single molecule superresolution of cellular nanostructures

Rainer Kaufmann; Paul Lemmer; Manuel Gunkel; Yanina Weiland; Patrick Müller; Michael Hausmann; David Baddeley; Roman Amberger; Christoph Cremer

Novel methods of visible light microscopy have overcome the limits of resolution hitherto thought to be insurmountable. The localization microscopy technique presented here based on the principles of Spectral Precision Distance Microscopy (SPDM) with conventional fluorophores under special physical conditions allows to measure the spatial distribution of single fluorescence labeled molecules in entire cells with macromolecular precision which is comparable to a macromolecular effective optical resolution. Based on detection of single molecules, in a novel combination of SPDM and Spatially Modulated Illumination (SMI) microscopy, a lateral (2D) effective optical resolution of cellular nanostructures around 10 - 20 nm (about 1/50th of the exciting wavelength) and a three dimensional (3D) effective optical resolution in the range of 40 - 50 nm are achieved.


Applied Physics B | 2008

SPDM: light microscopy with single-molecule resolution at the nanoscale

Paul Lemmer; Manuel Gunkel; David Baddeley; Rainer Kaufmann; A. Urich; Yanina Weiland; Jürgen Reymann; Patrick Müller; Michael Hausmann; Christoph Cremer


Archive | 2009

method and an apparatus for localization of single dye molecules in the fluorescent microscopy

Paul Lemmer; Christoph Cremer; David Baddeley; Heinz Eipel


Chromosome Research | 2011

Combining FISH with localisation microscopy: Super-resolution imaging of nuclear genome nanostructures

Yanina Weiland; Paul Lemmer; Christoph Cremer


Archive | 2010

Far-Field Fluorescence Microscopy of Cellular Structures at Molecular Optical Resolution

Christoph Cremer; Alexa von Ketteler; Paul Lemmer; Rainer Kaufmann; Yanina Weiland; Patrick Mueller; M. Hausmann; Manuel Gunkel; Thomas Ruckelshausen; David Baddeley; Roman Amberger

Collaboration


Dive into the Paul Lemmer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge