Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul M. Barrett is active.

Publication


Featured researches published by Paul M. Barrett.


Nature | 2003

An exceptionally preserved Lower Cretaceous ecosystem

Zhonghe Zhou; Paul M. Barrett; Jason Hilton

Fieldwork in the Early Cretaceous Jehol Group, northeastern China has revealed a plethora of extraordinarily well-preserved fossils that are shaping some of the most contentious debates in palaeontology and evolutionary biology. These discoveries include feathered theropod dinosaurs and early birds, which provide additional, indisputable support for the dinosaurian ancestry of birds, and much new evidence on the evolution of feathers and flight. Specimens of putative basal angiosperms and primitive mammals are clarifying details of the early radiations of these major clades. Detailed soft-tissue preservation of the organisms from the Jehol Biota is providing palaeobiological insights that would not normally be accessible from the fossil record.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Dinosaur diversity and the rock record

Paul M. Barrett; Alistair J. McGowan; Victoria Page

Palaeobiodiversity analysis underpins macroevolutionary investigations, allowing identification of mass extinctions and adaptive radiations. However, recent large-scale studies on marine invertebrates indicate that geological factors play a central role in moulding the shape of diversity curves and imply that many features of such curves represent sampling artefacts, rather than genuine evolutionary events. In order to test whether similar biases affect diversity estimates for terrestrial taxa, we compiled genus-richness estimates for three Mesozoic dinosaur clades (Ornithischia, Sauropodomorpha and Theropoda). Linear models of expected genus richness were constructed for each clade, using the number of dinosaur-bearing formations available through time as a proxy for the amount of fossiliferous rock outcrop. Modelled diversity estimates were then compared with observed patterns. Strong statistically robust correlations demonstrate that almost all aspects of ornithischian and theropod diversity curves can be explained by geological megabiases, whereas the sauropodomorph record diverges from modelled predictions and may be a stronger contender for identifying evolutionary signals. In contrast to other recent studies, we identify a marked decline in dinosaur genus richness during the closing stages of the Cretaceous Period, indicating that the clade decreased in diversity for several million years prior to the final extinction of non-avian dinosaurs at the Cretaceous–Palaeocene boundary.


Biological Reviews | 2011

Testing the effect of the rock record on diversity: a multidisciplinary approach to elucidating the generic richness of sauropodomorph dinosaurs through time

Philip D. Mannion; Paul Upchurch; Matthew T. Carrano; Paul M. Barrett

The accurate reconstruction of palaeobiodiversity patterns is central to a detailed understanding of the macroevolutionary history of a group of organisms. However, there is increasing evidence that diversity patterns observed directly from the fossil record are strongly influenced by fluctuations in the quality of our sampling of the rock record; thus, any patterns we see may reflect sampling biases, rather than genuine biological signals. Previous dinosaur diversity studies have suggested that fluctuations in sauropodomorph palaeobiodiversity reflect genuine biological signals, in comparison to theropods and ornithischians whose diversity seems to be largely controlled by the rock record. Most previous diversity analyses that have attempted to take into account the effects of sampling biases have used only a single method or proxy: here we use a number of techniques in order to elucidate diversity. A global database of all known sauropodomorph body fossil occurrences (2024) was constructed. A taxic diversity curve for all valid sauropodomorph genera was extracted from this database and compared statistically with several sampling proxies (rock outcrop area and dinosaur‐bearing formations and collections), each of which captures a different aspect of fossil record sampling. Phylogenetic diversity estimates, residuals and sample‐based rarefaction (including the first attempt to capture ‘cryptic’ diversity in dinosaurs) were implemented to investigate further the effects of sampling. After ‘removal’ of biases, sauropodomorph diversity appears to be genuinely high in the Norian, Pliensbachian–Toarcian, Bathonian–Callovian and Kimmeridgian–Tithonian (with a small peak in the Aptian), whereas low diversity levels are recorded for the Oxfordian and Berriasian–Barremian, with the Jurassic/Cretaceous boundary seemingly representing a real diversity trough. Observed diversity in the remaining Triassic–Jurassic stages appears to be largely driven by sampling effort. Late Cretaceous diversity is difficult to elucidate and it is possible that this interval remains relatively under‐sampled. Despite its distortion by sampling biases, much of sauropodomorph palaeobiodiversity can be interpreted as a reflection of genuine biological signals, and fluctuations in sea level may account for some of these diversity patterns.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes

Johannes Müller; Torsten M. Scheyer; Jason J. Head; Paul M. Barrett; Ingmar Werneburg; Per G. P. Ericson; Diego Pol; Marcelo R. Sánchez-Villagra

The development of distinct regions in the amniote vertebral column results from somite formation and Hox gene expression, with the adult morphology displaying remarkable variation among lineages. Mammalian regionalization is reportedly very conservative or even constrained, but there has been no study investigating vertebral count variation across Amniota as a whole, undermining attempts to understand the phylogenetic, ecological, and developmental factors affecting vertebral column variation. Here, we show that the mammalian (synapsid) and reptilian lineages show early in their evolutionary histories clear divergences in axial developmental plasticity, in terms of both regionalization and meristic change, with basal synapsids sharing the conserved axial configuration of crown mammals, and basal reptiles demonstrating the plasticity of extant taxa. We conducted a comprehensive survey of presacral vertebral counts across 436 recent and extinct amniote taxa. Vertebral counts were mapped onto a generalized amniote phylogeny as well as individual ingroup trees, and ancestral states were reconstructed by using squared-change parsimony. We also calculated the relationship between presacral and cervical numbers to infer the relative influence of homeotic effects and meristic changes and found no correlation between somitogenesis and Hox-mediated regionalization. Although conservatism in presacral numbers characterized early synapsid lineages, in some cases reptiles and synapsids exhibit the same developmental innovations in response to similar selective pressures. Conversely, increases in body mass are not coupled with meristic or homeotic changes, but mostly occur in concert with postembryonic somatic growth. Our study highlights the importance of fossils in large-scale investigations of evolutionary developmental processes.


In: Sues, H-D, (ed.) Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. (pp. 79-122). Cambridge University Press: Cambridge. (2000) | 2000

Evolution of Herbivory in Terrestrial Vertebrates: The evolution of sauropod feeding mechanisms

Paul Upchurch; Paul M. Barrett

Introduction Sauropods were gigantic, long-necked, herbivorous dinosaurs, which dominated many Jurassic and Cretaceous terrestrial faunas. First appearing in the fossil record during the Early Jurassic, they rapidly achieved a nearly global distribution, with apparent peaks in diversity and abundance in the Kimmeridgian, Hauterivian–Barremian, and Campanian–Maastrichtian (McIntosh 1990; Weishampel 1990; Hunt et al. 1994; Barrett 1998). Early discoveries of poorly preserved sauropod material were interpreted as the remains of marine crocodiles (Owen 1841, 1842). Better preserved specimens ( Cetiosaurus ) from the Middle Jurassic of Oxfordshire, however, allowed Phillips (1871:294) to recognize that these animals were terrestrial dinosaurs which probably ate plants. This discovery was soon overshadowed by spectacular material from the western United States (Cope 1877a, b; Marsh 1877a, b, 1878, 1879), prompting Marsh (1878) to create the new dinosaurian subgroup Sauropoda. The retracted nostrils in the skull of Diplodocus (Marsh 1884), and the gigantic size of these animals, led many workers to conclude that sauropods must have been aquatic (Cope 1878; Marsh 1883; Hatcher 1901; Hay 1908). This ‘aquatic’ hypothesis had an important effect on interpretations of sauropod feeding habits and mechanisms. If such gigantic animals were restricted to food available in or near bodies of water, they probably ate soft aquatic vegetation or invertebrates (Hay 1908; Holland 1924; Haas 1963). This view was seemingly supported by the ‘weak and inefficient’ masticatory apparatus of most sauropods, especially the ‘tooth-comb’ of Diplodocus , which could have been used for straining items from the water.


Biological Reviews of The Cambridge Philosophical Society | 2001

Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited

Paul M. Barrett; Katherine J. Willis

Angiosperms first appeared in northern Gondwana during the Early Cretaceous, approximately 135 million years ago. Several authors have hypothesised that the origin of angiosperms, and the tempo and pattern of their subsequent radiation, was mediated by changes in the browsing behaviour of large herbivorous dinosaurs (sauropods and ornithischians). Moreover, the taxonomic and ecological radiation of angiosperms has been associated with the evolution of complex jaw mechanisms among ornithischian dinosaurs. Here, we review critically the evidence for dinosaur–angiosperm interactions during the Cretaceous Period, providing explicit spatiotemporal comparisons between evolutionary and palaeoecological events in both the dinosaur and angiosperm fossil records and an assessment of the direct and indirect evidence for dinosaur diets. We conclude that there are no strong spatiotemporal correlations in support of the hypothesis that dinosaurs were causative agents in the origin of angiosperms; however, dinosaur–angiosperm interactions in the Late Cretaceous may have resulted in some coevolutionary interactions, although direct evidence of such interactions is scanty at present. It is likely that other animal groups (insects, arboreal mammals) had a greater impact on angiosperm diversity during the Cretaceous than herbivorous dinosaurs. Elevated levels of atmospheric CO2 might have played a critical role in the initial stages of the angiosperm radiation.


Paleobiology | 2009

Estimating the effects of sampling biases on pterosaur diversity patterns: implications for hypotheses of bird/pterosaur competitive replacement

Richard J. Butler; Paul M. Barrett; Stephen Nowbath; Paul Upchurch

Abstract Pterosaurs were the first flying vertebrates and formed important components of terrestrial and marginal marine ecosystems during the Mesozoic. They became extinct during the latest Cretaceous (latest Maastrichtian), at, or near, the Cretaceous/Paleogene boundary, following an apparent decline in diversity in the Late Cretaceous. This reduction in species richness has been linked to the ecological radiation of birds in the Early Cretaceous and the proposal that birds competitively excluded pterosaurs from many key niches. However, although competition is often posited as a causal mechanism for many of the clade-clade replacements observed in the fossil record, these hypotheses are rarely tested. Here we present a detailed examination of pterosaur diversity through time, including both taxic and phylogenetically corrected diversity estimates and comparison of these estimates with a model describing temporal variation in the number of pterosaur-bearing formations (a proxy for rock availability). Both taxic and phylogenetic diversity curves are strongly correlated with numbers of pterosaur-bearing formations, suggesting that a significant part of the signal contained within pterosaur diversity patterns may be controlled by geological and taphonomic megabiases rather than macroevolutionary processes. There is no evidence for a long-term decline in pterosaur diversity through the Cretaceous, although a reduction in morphological, ecological, and phylogenetic diversity does appear to have occurred in the latest Cretaceous. Competitive replacement of pterosaurs by birds is difficult to support on the basis of diversity patterns.


Science | 2010

Cretaceous Extinctions: Multiple Causes

J. David Archibald; William A. Clemens; Kevin Padian; Timothy Rowe; Norman MacLeod; Paul M. Barrett; Andrew J. Gale; Patricia A. Holroyd; Hans-Dieter Sues; Nan Crystal Arens; John R. Horner; Gregory P. Wilson; Mark B. Goodwin; Christopher A. Brochu; Donald L. Lofgren; Joseph H. Hartman; David A. Eberth; Paul B. Wignall; Philip J. Currie; Anne Weil; G. V. R. Prasad; Lowell Dingus; Vincent Courtillot; Angela C. Milner; Andrew R. Milner; Sunil Bajpai; David J. Ward; Ashok Sahni

![Figure][1] Deccan plateau basalts. Lava from Deccan volcanism formed distinct layering. CREDIT: GSFC/NASA In the Review “The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene boundary” (P. Schulte et al. , 5 March, p. [1214][2]), the terminal Cretaceous


Palaeontology | 2002

Sauropod dinosaurs from the Lower Cretaceous of eastern Asia: taxonomic and biogeographical implications

Paul M. Barrett; Yoshikazu Hasegawa; Makoto Manabe; Shinji Isaji; Hiroshige Matsuoka

Sauropod dinosaurs are poorly represented in the Lower Cretaceous of eastern Asia. Here, we describe a number of isolated sauropod teeth from the Kuwajima Formation (?Berriasian–?Hauterivian) of Shiramine, Japan. The mosaic of shared derived characters and symplesiomorphies displayed by the teeth indicate that they are referable to a basal member of the titanosauriform radiation. A taxonomic review of previously described sauropod specimens from eastern and south–eastern Asia reveals that a diversity of sauropods (including a titanosaurian, a basal titanosauriform and a ?euhelopodid, as well as several forms of indeterminate systematic position) was present in this region in the Early Cretaceous. This diversity conflicts with previous suggestions that eastern Asia was biogeographically isolated from the rest of Laurasia until the late Early Cretaceous and that the sauropod fauna was limited to the endemic East Asian clade Euhelopodidae. The presence of titanosauriform sauropods in the basal Cretaceous of Japan and Thailand indicate that the proposed faunal isolation of eastern Asia ended approximately 20 myr earlier than usually suggested.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Inner ear anatomy is a proxy for deducing auditory capability and behaviour in reptiles and birds

Stig A. Walsh; Paul M. Barrett; Angela C. Milner; Geoffrey A. Manley; Lawrence M. Witmer

Inferences of hearing capabilities and audition-related behaviours in extinct reptiles and birds have previously been based on comparing cochlear duct dimensions with those of living species. However, the relationship between inner-ear bony anatomy and hearing ability or vocalization has never been tested rigorously in extant or fossil taxa. Here, micro-computed tomographic analysis is used to investigate whether simple endosseous cochlear duct (ECD) measurements can be fitted to models of hearing sensitivity, vocalization, sociality and environmental preference in 59 extant reptile and bird species, selected based on their vocalization ability. Length, rostrocaudal/mediolateral width and volume measurements were taken from ECD virtual endocasts and scaled to basicranial length. Multiple regression of these data with measures of hearing sensitivity, vocal complexity, sociality and environmental preference recovered positive correlations between ECD length and hearing range/mean frequency, vocal complexity, the behavioural traits of pair bonding and living in large aggregations, and a negative correlation between ECD length/rostrocaudal width and aquatic environments. No other dimensions correlated with these variables. Our results suggest that ECD length can be used to predict mean hearing frequency and range in fossil taxa, and that this measure may also predict vocal complexity and large group sociality given comprehensive datasets.

Collaboration


Dive into the Paul M. Barrett's collaboration.

Top Co-Authors

Avatar

Paul Upchurch

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan E. Evans

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge