Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul M. Whitington is active.

Publication


Featured researches published by Paul M. Whitington.


Proceedings of the Royal Society of London B: Biological Sciences | 2009

Velvet worm development links myriapods with chelicerates

Georg Mayer; Paul M. Whitington

Despite the advent of modern molecular and computational methods, the phylogeny of the four major arthropod groups (Chelicerata, Myriapoda, Crustacea and Hexapoda, including the insects) remains enigmatic. One particular challenge is the position of myriapods as either the closest relatives to chelicerates (Paradoxopoda/Myriochelata hypothesis), or to crustaceans and hexapods (Mandibulata hypothesis). While neither hypothesis receives conclusive support from molecular analyses, most morphological studies favour the Mandibulata concept, with the mandible being the most prominent feature of this group. Although no morphological evidence was initially available to support the Paradoxopoda hypothesis, a putative synapomorphy of chelicerates and myriapods has recently been put forward based on studies of neurogenesis. However, this and other morphological characters remain of limited use for phylogenetic systematics owing to the lack of data from an appropriate outgroup. Here, we show that several embryonic characters are synapomorphies uniting the chelicerates and myriapods, as revealed by an outgroup comparison with the Onychophora or velvet worms. Our findings, thus provide, to our knowledge, first morphological/embryological support for the monophyly of the Paradoxopoda and suggest that the mandible might have evolved twice within the arthropods.


BMC Evolutionary Biology | 2010

A revision of brain composition in Onychophora (velvet worms) suggests that the tritocerebrum evolved in arthropods

Georg Mayer; Paul M. Whitington; Paul Sunnucks; Hans-Joachim Pflüger

BackgroundThe composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms) play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain - key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda - remain unclear.ResultsUsing immunolabelling and neuronal tracing techniques in the developing and adult onychophoran brain, we found that the major brain neuropils arise from only the anterior-most body segment, and that two pairs of segmental appendages are innervated by the brain. The region of the central nervous system corresponding to the arthropod tritocerebrum is not differentiated as part of the onychophoran brain but instead belongs to the ventral nerve cords.ConclusionsOur results contradict the assumptions of a tripartite (three-segmented) brain in Onychophora and instead confirm the hypothesis of bipartite (two-segmented) brain composition. They suggest that the last common ancestor of Onychophora and Arthropoda possessed a brain consisting of protocerebrum and deutocerebrum whereas the tritocerebrum evolved in arthropods.


Neural Development | 2007

Drosophila as a genetic and cellular model for studies on axonal growth

Natalia Sánchez-Soriano; Guy Tear; Paul M. Whitington; Andreas Prokop

One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.


Arthropod Structure & Development | 2011

The origins of the arthropod nervous system: insights from the Onychophora.

Paul M. Whitington; Georg Mayer

A revision of evolutionary relationships of the Arthropoda has provided fresh impetus to tracing the origins of the nervous system of this group of animals: other members of the Ecdysozoa possess a markedly different type of nervous system from both the arthropods and the annelid worms, with which they were previously grouped. Given their status as favoured sister taxon of the arthropods, Onychophora (velvet worms) are a key group for understanding the evolutionary changes that have taken place in the panarthropod (Arthropoda + Onychophora + Tardigrada) lineage. This article reviews our current knowledge of the structure and development of the onychophoran nervous system. The picture that emerges from these studies is that the nervous system of the panarthropod ancestor was substantially different from that of modern arthropods: this animal probably possessed a bipartite, rather than a tripartite brain; its nerve cord displayed only a limited degree of segmentation; and neurons were more numerous but more uniform in morphology than in living arthropods. These observations suggest an evolutionary scenario, by which the arthropod nervous system evolved from a system of orthogonally crossing nerve tracts present in both a presumed protostome ancestor and many extant worm-like invertebrates, including the onychophorans.


Developmental Neurobiology | 2009

The migratory behavior of immature enteric neurons

Marlene M. Hao; Richard B. Anderson; Kazuto Kobayashi; Paul M. Whitington; Heather M. Young

While they are migrating caudally along the developing gut, around 10%–20% of enteric neural crest‐derived cells start to express pan‐neuronal markers and tyrosine hydroxylase (TH). We used explants of gut from embryonic TH‐green fluorescence protein (GFP) mice and time‐lapse microscopy to examine whether these immature enteric neurons migrate and their mode of migration. In the gut of E10.5 and E11.5 TH‐GFP mice, around 50% of immature enteric neurons (GFP+ cells) migrated, with an average speed of around 15 μm/h. This is slower than the speed at which the population of enteric neural crest‐derived cells advances along the developing gut, and hence neuronal differentiation seems to slow, but not necessarily halt, the caudal migration of enteric neural crest cells. Most migrating immature enteric neurons migrated caudally by extending a long‐leading process followed by translocation of the cell body. This mode of migration is different from that of non‐neuronal enteric neural crest‐derived cells and neural crest cells in other locations, but resembles that of migrating neurons in many regions of the developing central nervous system (CNS). In migrating immature enteric neurons, a swelling often preceded the movement of the nucleus in the direction of the leading process. However, the centrosomal marker, pericentrin, was not localized to either the leading process or swelling. This seems to be the first detailed report of neuronal migration in the developing mammalian peripheral nervous system.


Developmental Biology | 2009

The atypical cadherin Flamingo is required for sensory axon advance beyond intermediate target cells

Martin C. Steinel; Paul M. Whitington

The Drosophila atypical cadherin Flamingo plays key roles in a number of developmental processes. We have used the sensory nervous system of the Drosophila embryo to shed light on the mechanism by which Flamingo regulates axon growth. flamingo loss of function mutants display a highly penetrant sensory axon stall phenotype. The location of these axon stalls is stereotypic and corresponds to the position of intermediate target cells, with which sensory axons associate during normal development. This suggests that Flamingo mediates an interaction between the sensory neuron growth cones and these intermediate targets, which is required for continued axon advance. Mutant rescue experiments show that Flamingo expression is required only in sensory neurons for normal axon growth. The flamingo mutant phenotype can be partially rescued by expressing a Flamingo construct lacking most of the extracellular domain, suggesting that regulation of sensory axon advance by Flamingo does not absolutely depend upon a homophilic Flamingo-Flamingo interaction or its ability to mediate cell-cell adhesion. Loss of function mutants for a number of key genes that act together with Flamingo in the planar cell polarity pathway do not display the highly penetrant stalling phenotype seen in flamingo mutants.


The Journal of Neuroscience | 2011

Morphological Characterization of the Entire Interneuron Population Reveals Principles of Neuromere Organization in the Ventral Nerve Cord of Drosophila

Christof Rickert; Thomas Kunz; Kerri-Lee Harris; Paul M. Whitington; Gerhard M. Technau

Decisive contributions to our understanding of the mechanisms underlying the development of the nervous system have been made by studies performed at the level of single, identified cells in the fruit fly Drosophila. While all the motor neurons and glial cells in thoracic and abdominal segments of the Drosophila embryo have been individually identified, few of the interneurons, which comprise the vast majority of cells in the CNS, have been characterized at this level. We have applied a single cell labeling technique to carry out a detailed morphological characterization of the entire population of interneurons in abdominal segments A1–A7. Based on the definition of a set of spatial parameters specifying axonal projection patterns and cell body positions, we have identified 270 individual cell types as the complete hemisegmental set of interneurons and placed these in an interactive database. As well as facilitating analyses of developmental processes, this comprehensive set of data sheds light on the principles underlying the formation and organization of an entire segmental unit of the CNS.


Developmental Biology | 2011

The core planar cell polarity gene prickle interacts with flamingo to promote sensory axon advance in the Drosophila embryo

Eli M. Mrkusich; Dustin J. Flanagan; Paul M. Whitington

The atypical cadherin Drosophila protein Flamingo and its vertebrate homologues play widespread roles in the regulation of both dendrite and axon growth. However, little is understood about the molecular mechanisms that underpin these functions. Whereas flamingo interacts with a well-defined group of genes in regulating planar cell polarity, previous studies have uncovered little evidence that the other core planar cell polarity genes are involved in regulation of neurite growth. We present data in this study showing that the planar cell polarity gene prickle interacts with flamingo in regulating sensory axon advance at a key choice point - the transition between the peripheral nervous system and the central nervous system. The cytoplasmic tail of the Flamingo protein is not required for this interaction. Overexpression of another core planar cell polarity gene dishevelled produces a similar phenotype to prickle mutants, suggesting that this gene may also play a role in regulation of sensory axon advance.


Developmental Biology | 1984

Axon growth from limb motorneurons in the locust embryo: the effect of target limb removal on the pattern of axon branching in the periphery.

Paul M. Whitington; Eveline Seifert

Metathoracic limb buds have been unilaterally ablated from locust embryos at 25 to 30% of embryonic development and the effect of this operation on the axon morphology of the motorneuron fast extensor tibiae (FETi) observed at later embryonic stages. In control embryos this neuron sends a single axon out the main leg nerve, nerve 5, to the extensor tibiae muscle in the femur. In limb ablated embryos the axon of FETi is found in a wide variety of aberrant peripheral nerve pathways and projects to a wide range of foreign muscles. There is a degree of apparent selectivity, but no rigid hierarchy, in the choice of pathway and muscle made by FETi. A high degree of variability is found between one embryo and another in the extent and pattern of axon branching. The axon of FETi is generally found in pathways that correspond to nerves in control embryos but on occasion grows along novel routes. An anteriorly directed dendritic branch, seldom seen in control FETi neurons, is frequently seen in experimental FETis. These findings are discussed in terms of the rules for specific axon growth in normal development.


International Journal of Developmental Neuroscience | 2004

Necessity and redundancy of guidepost cells in the embryonic Drosophila CNS.

Paul M. Whitington; Carol Quilkey; Helen Sink

Guidepost cells are specific cellular cues in the embryonic environment utilized by axonal growth cones in pathfinding decisions. In the embryonic Drosophila CNS the RP motor axons make stereotypic pathways choices involving distinct cellular contacts: (i) extension across the midline via contact with the axon and cell body of the homologous contralateral RP motoneuron, (ii) extension down the contralateral longitudinal connective (CLC) through contact with connective axons and longitudinal glia, and (iii) growth into the intersegmental nerve (ISN) through contact with ISN axons and the segmental boundary glial cell (SBC). We have now ablated putative guidepost cells in each of the CNS pathway subsections and uncovered their impact on subsequent RP motor axon pathfinding. Removal of the longitudinal glia or the SBC did not adversely affect pathfinding. This suggests that the motor axons either utilized the alternative axonal substrates, or could still make filopodial contact with the next pathway sections cues. In contrast, RP motor axons did require contact with the axon and soma of their contralateral RP homologue. Absence of this neuronal substrate frequently impeded RP axon outgrowth, suggesting that the next cues were beyond filopodial reach. Together these are the first direct ablations of putative guidepost cells in the CNS of this model system, and have uncovered both pathfinding robustness and susceptibility by RP axons in the absence of specific contacts.

Collaboration


Dive into the Paul M. Whitington's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge