Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul M. Yen is active.

Publication


Featured researches published by Paul M. Yen.


Endocrinology | 1998

Expression and Hormonal Regulation of Coactivator and Corepressor Genes

Silvia Misiti; Lutz Schomburg; Paul M. Yen; William W. Chin

Steroid/thyroid/retinoid receptors are members of the nuclear receptor superfamily and ligand-inducible transcription factors. These receptors modulate transcription of various cellular genes, either positively or negatively, by interacting with specific hormone-response elements located in the target gene promoters. Recent data show that nuclear receptors enhance or inhibit transcription by recruiting an array of coactivator and corepressor proteins to the transcription complex. We examined and compared the expression of four coactivator (steroid receptor coactivator-1 and E1A-associated 300-kDa protein) and corepressor (SMRT and N-CoR) genes in a number of tissues including several endocrine glands and cell lines. We also addressed whether their messenger RNA levels are hormonally regulated by studying the effects of thyroid hormone (T3) and estrogen (E2) treatment in rat pituitary cells (GH3) in vitro and in anterior pituitary in vivo. Our studies show that there are distinct tissue-specific expression...


Cell | 2011

Dynamic Exchange at Regulatory Elements during Chromatin Remodeling Underlies Assisted Loading Mechanism

Ty C. Voss; R. Louis Schiltz; Myong Hee Sung; Paul M. Yen; John A. Stamatoyannopoulos; Simon C. Biddie; Thomas A. Johnson; Tina B. Miranda; Sam John; Gordon L. Hager

The glucocorticoid receptor (GR), like other eukaryotic transcription factors, regulates gene expression by interacting with chromatinized DNA response elements. Photobleaching experiments in living cells indicate that receptors transiently interact with DNA on the time scale of seconds and predict that the response elements may be sparsely occupied on average. Here, we show that the binding of one receptor at the glucocorticoid response element (GRE) does not reduce the steady-state binding of another receptor variant to the same GRE. Mathematical simulations reproduce this noncompetitive state using short GR/GRE residency times and relatively long times between DNA binding events. At many genomic sites where GR binding causes increased chromatin accessibility, concurrent steady-state binding levels for the variant receptor are actually increased, a phenomenon termed assisted loading. Temporally sparse transcription factor-DNA interactions induce local chromatin reorganization, resulting in transient access for binding of secondary regulatory factors.


Journal of Biological Chemistry | 2003

Dynamic Shuttling and Intranuclear Mobility of Nuclear Hormone Receptors

Padma Maruvada; Christopher T. Baumann; Gordon L. Hager; Paul M. Yen

We expressed green fluorescent protein (GFP) chimeras of estrogen, retinoic acid, and thyroid hormone receptors (ERs, RARs, and TRs, respectively) in HeLa cells to examine nucleocytoplasmic shuttling and intranuclear mobility of nuclear hormone receptors (NRs) by confocal microscopy. These receptors were predominantly in the nucleus and, interestingly, underwent intranuclear reorganization after ligand treatment. Nucleocytoplasmic shuttling was demonstrated by heterokaryon experiments and energy-dependent blockade of nuclear import and leptomycin-dependent blockade of nuclear export. Ligand addition decreased shuttling by GFP-ER, whereas heterodimerization with retinoid X receptor helped maintain TR and RAR within the nucleus. Intranuclear mobility of the GFP-NRs was studied by fluorescence recovery after photo-bleaching ± cognate ligands. Both GFP-TR and GFP-RAR moved rapidly in the nucleus, and ligand binding did not significantly affect their mobility. In contrast, estrogen binding decreased the mobility of GFP-ER and also increased the fraction of GFP-ER that was unable to diffuse. These effects were even more pronounced with tamoxifen. Co-transfection of the co-activator, SRC-1, further slowed the mobility of liganded GFP-ER. Our findings suggest estradiol and tamoxifen exert differential effects on the intranuclear mobility of GFP-ER. They also show that ligand-binding and protein-protein interactions can affect the intracellular mobility of some NRs and thereby may contribute to their biological activity.


Molecular and Cellular Endocrinology | 2006

Thyroid hormone action at the cellular, genomic and target gene levels.

Paul M. Yen; Shinichiro Ando; Xu Feng; Ying Liu; Padma Maruvada; Xianmin Xia

Thyroid hormone (TH) plays important roles in metabolism, growth and differentiation. Thyroid hormone receptors (TRs) are ligand-regulatable transcription factors that bind both TH and DNA enhancer sequences in the promoter region of target genes where they can interact with co-repressor and co-activator complexes. These interactons, in turn, have consequent effects on transcription. This review describes studies on TH action from our laboratory examining the cellular localization and motility of TRs using green fluorescent fusion proteins, gene expression profiles of TH in WT and TRalpha and TRbeta KO mice, as well as general transcription factor and co-activator recruitment on the promoters of target genes by TH in chromatin immunoprecipitation assays.


Journal of the American Chemical Society | 2010

Comparative analysis of small molecules and histone substrate analogues as LSD1 lysine demethylase inhibitors.

Jeffrey C. Culhane; Dongqing Wang; Paul M. Yen; Philip A. Cole

LSD1 is a flavin-dependent histone demethylase that oxidatively removes methyl groups from Lys-4 of histone H3. LSD1 belongs to the amine oxidase enzyme superfamily which utilize molecular oxygen to transform amines to imines that are hydrolytically cleaved to formaldehyde. In prior studies, it has been shown that monoamine oxidase inhibitory scaffolds such as propargylamines and cyclopropylamines can serve as mechanism-based inactivators of LSD1. Propargylamine-histone H3 peptide analogues are potent LSD1 inhibitors, whereas small molecule antidepressant MAO acetylenic inhibitors like pargyline do not inhibit LSD1. In contrast, the small molecule MAO cyclopropylamine inhibitor tranylcypromine is a time-dependent LSD1 inhibitor but exo-cyclopropylamine-peptide substrate analogue is not. To provide further insight into small molecule versus peptide relationships in LSD1 inhibition, herein we further our analysis of warheads in peptide scaffolds to include the chlorovinyl, endo-cyclopropylamine, and hydrazine-functionalities as LSD1 inactivators. We find that chlorovinyl-H3 is a mechanism-based LSD1 inactivator whereas endo-cyclopropylamine-H3 does not show time-dependent inactivation. The hydrazine-H3 was shown to be the most potent LSD1 suicide inhibitor yet reported, more than 20-fold more efficient in inhibiting demethylation than propargylamine-H3 derivatives. We re-explored MAO antidepressant agent phenelzine (phenethylhydrazine), previously reported to be a weak LSD1 inhibitor, and found that it is far more potent than previously appreciated. We show that phenelzine can block histone H3K4Me demethylation in cells, validating it as a pharmacologic tool and potential lead structure for anticancer therapy.


Trends in Endocrinology and Metabolism | 1994

New advances in understanding the molecular mechanisms of thyroid hormone action

Paul M. Yen; William W. Chin

Thyroid hormone regulation o f gene transcription is a complex process. There are multiple thyroid hormone receptors (TRs) encoded on separate genes that bind to thyroid hormone-response elements (TREs) of target genes containing different orientation and spacing of half-sites. Additionally, there are multiple TR complexes-monomers, homodimers, and heterodimers with other related nuclear proteins-which bind to TREs and may play important roles in gene transcription. Recently, it has been shown that DNA binding of these TR complexes can be differentially regulated by either ligand or TR phosphorylation. Diversity among TR complexes and TREs, as well as mechanisms for regulating TR binding to TREs, may enable sensitive and precise transcriptional control of target genes.


The EMBO Journal | 1999

Ligand-induced recruitment of a histone deacetylase in the negative-feedback regulation of the thyrotropin beta gene.

Shigekazu Sasaki; Leslie A. Lesoon-Wood; Anup Dey; Takeshi Kuwata; Bruce D. Weintraub; Glen W. Humphrey; Wen-Ming Yang; Edward Seto; Paul M. Yen; Bruce H. Howard; Keiko Ozato

We have investigated ligand‐dependent negative regulation of the thyroid‐stimulating hormone β (TSHβ) gene. Thyroid hormone (T3) markedly repressed activity of the TSHβ promoter that had been stably integrated into GH3 pituitary cells, through the conserved negative regulatory element (NRE) in the promoter. By DNA affinity binding assay, we show that the NRE constitutively binds to the histone deacetylase 1 (HDAC1) present in GH3 cells. Significantly, upon addition of T3, the NRE further recruited the thyroid hormone receptor (TRβ) and another deacetylase, HDAC2. This recruitment coincided with an alteration of in vivo chromatin structure, as revealed by changes in restriction site accessibility. Supporting the direct interaction between TR and HDAC, in vitro assays showed that TR, through its DNA binding domain, strongly bound to HDAC2. Consistent with the role for HDACs in negative regulation, an inhibitor of the enzymes, trichostatin A, attenuated T3‐dependent promoter repression. We suggest that ligand‐dependent histone deacetylase recruitment is a mechanism of the negative‐feedback regulation, a critical function of the pituitary–thyroid axis.


Trends in Endocrinology and Metabolism | 2003

Molecular basis of resistance to thyroid hormone

Paul M. Yen

Resistance to thyroid hormone (RTH) is a syndrome in which patients have raised serum thyroid hormone (TH) levels and raised or inappropriately normal thyrotropin (TSH) levels. In general, patients exhibit TH resistance in the pituitary and peripheral tissues. Novel techniques and genetically engineered mouse model systems have increased our understanding of thyroid hormone receptor (TR) action, and shed new light on the underlying molecular mechanisms for RTH. In particular, we are learning how mutant TRs from RTH patients can block wild-type TR function, with consequent effects in various tissues and cells. This dominant-negative activity has important implications for other hormone-resistant conditions and in hormone-sensitive tumors. This article examines the molecular basis of RTH.


Hepatology | 2014

Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice

Rohit A. Sinha; Benjamin L. Farah; Brijesh K. Singh; Monowarul M. Siddique; Ying Li; Yajun Wu; Olga Ilkayeva; Jessica R. Gooding; Jianhong Ching; Jin Zhou; Laura Martínez; Sherwin Xie; Boon-Huat Bay; Scott A. Summers; Christopher B. Newgard; Paul M. Yen

Caffeine is one of the worlds most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity‐related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β‐oxidation in hepatic cells and liver by an autophagy‐lysosomal pathway. Furthermore, caffeine‐induced autophagy involved down‐regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high‐fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. Conclusion: These results provide novel insight into caffeines lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD. (Hepatology 2014;59:1366‐1380)


Journal of Virology | 2003

Role of the Asialoglycoprotein Receptor in Binding and Entry of Hepatitis C Virus Structural Proteins in Cultured Human Hepatocytes

Bertrand Saunier; Miriam Triyatni; Luca Ulianich; Padma Maruvada; Paul M. Yen; Leonard D. Kohn

ABSTRACT We used a baculovirus-based system to prepare structural proteins of hepatitis C virus (HCV) genotype 1a. Binding of this preparation to cultured human hepatic cells was both dose dependent and saturable. This binding was decreased by calcium depletion and was partially prevented by ligands of the asialoglycoprotein receptor (ASGP-R), thyroglobulin, asialothyroglobulin, and antibody against a peptide in the carbohydrate recognition domain of ASGP-R but not preimmune antibody. Uptake by hepatocytes was observed with both radiolabeled and dye-labeled HCV structural proteins. With hepatocytes expressing the hH1 subunit of the ASGP-R fused to green fluorescent protein, we could show by confocal microscopy that dye stain cointernalized with the fusion protein in an area surrounding the nucleus. Internalization was more efficient with a preparation containing p7 than with one that did not. The two preparations bound to transfected 3T3-L1 cells expressing either both (hH1 and hH2) subunits of the ASGP-R (3T3-22Z cells) or both hH1 and a functionally defective variant of hH2 (3T3-24X cells) but not to parental cells. Additionally, uptake of dye-labeled preparation containing p7 was observed with 3T3-22Z cells but not with 3T3-L1 or 3T3-24X cells or with the preparation lacking p7, suggesting that p7 regulates the internalization properties of HCV structural proteins. Our observations suggest that HCV structural proteins bind to and cointernalize with the ASGP-R in cultured human hepatocytes.

Collaboration


Dive into the Paul M. Yen's collaboration.

Top Co-Authors

Avatar

William W. Chin

Singapore General Hospital

View shared research outputs
Top Co-Authors

Avatar

Rohit A. Sinha

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Brijesh K. Singh

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jin Zhou

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ying Liu

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Boon-Huat Bay

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yajun Wu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin L. Farah

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge