Paul Markowski
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul Markowski.
Weather and Forecasting | 2003
Richard L. Thompson; Roger Edwards; John A. Hart; Kimberly L. Elmore; Paul Markowski
A sample of 413 soundings in close proximity to tornadic and nontornadic supercells is examined. The soundings were obtained from hourly analyses generated by the 40-km Rapid Update Cycle-2 (RUC-2) analysis and forecast system. A comparison of 149 observed soundings and collocated RUC-2 soundings in regional supercell environments reveals that the RUC-2 model analyses were reasonably accurate through much of the troposphere. The largest error tendencies were in temperatures and mixing ratios near the surface, primarily in 1-h forecast soundings immediately prior to the standard rawinsonde launches around 1200 and 0000 UTC. Overall, the RUC-2 analysis soundings appear to be a reasonable proxy for observed soundings in supercell environments. Thermodynamic and vertical wind shear parameters derived from RUC-2 proximity soundings are evaluated for the following supercell and storm subsets: significantly tornadic supercells (54 soundings), weakly tornadic supercells (144 soundings), nontornadic supercells (215 soundings), and discrete nonsupercell storms (75 soundings). Findings presented herein are then compared to results from previous and ongoing proximity soundings studies. Most significantly, proximity soundings presented here reinforce the findings of previous studies in that vertical shear and moisture within 1 km of the ground can discriminate between nontornadic supercells and supercells producing tornadoes with F2 or greater damage. Parameters that combine measures of buoyancy, vertical shear, and low-level moisture show the strongest ability to discriminate between supercell classes.
Monthly Weather Review | 2002
Paul Markowski; Jerry M. Straka; Erik N. Rasmussen
Abstract Despite the long-surmised importance of the hook echo and rear-flank downdraft (RFD) in tornadogenesis, only a paucity of direct observations have been obtained at the surface within hook echoes and RFDs. In this paper, in situ surface observations within hook echoes and RFDs are analyzed. These “mobile mesonet” data have unprecedented horizontal spatial resolution and were obtained from the Verifications of the Origins of Rotation in Tornadoes Experiment (VORTEX) and additional field experiments conducted since the conclusion of VORTEX. The surface thermodynamic characteristics of hook echoes and RFDs associated with tornadic and nontornadic supercells are investigated to address whether certain types of hook echoes and RFDs are favorable (or unfavorable) for tornadogenesis. Tornadogenesis is more likely and tornado intensity and longevity increase as the surface buoyancy, potential buoyancy (as measured by the convective available potential energy), and equivalent potential temperature in the R...
Weather and Forecasting | 1998
Paul Markowski; Erik N. Rasmussen; Jerry M. Straka
Abstract During the Verifications of the Origins of Rotation in Tornadoes Experiment, nearly 70% of the significant tornadoes occurred near low-level boundaries not associated with the forward or rear flank downdrafts of supercells. In general, these were preexisting boundaries readily identified using conventional data sources. Most of the tornadoes occurred on the cool side of these low-level boundaries and generally within 30 km of the boundaries. It is likely that the low-level boundaries augmented the “ambient” horizontal vorticity, which, upon further generation in the forward-flank region, became sufficient to be associated with tornadic low-level mesocyclones. Some implications for forecasting and further research are discussed.
Monthly Weather Review | 2002
Paul Markowski
Abstract Nearly 50 years of observations of hook echoes and their associated rear-flank downdrafts (RFDs) are reviewed. Relevant theoretical and numerical simulation results also are discussed. For over 20 years, the hook echo and RFD have been hypothesized to be critical in the tornadogenesis process. Yet direct observations within hook echoes and RFDs have been relatively scarce. Furthermore, the role of the hook echo and RFD in tornadogenesis remains poorly understood. Despite many strong similarities between simulated and observed storms, some possibly important observations within hook echoes and RFDs have not been reproduced in three-dimensional numerical models.
Bulletin of the American Meteorological Society | 2012
Joshua Wurman; David C. Dowell; Yvette Richardson; Paul Markowski; Erik N. Rasmussen; Donald W. Burgess; Louis J. Wicker; Howard B. Bluestein
The second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2), which had its field phases in May and June of 2009 and 2010, was designed to explore i) the physical processes of tornadogenesis, maintenance, and demise; ii) the relationships among tornadoes, tornadic storms, and the larger-scale environment; iii) numerical weather prediction and forecasting of supercell thunderstorms and tornadoes; and iv) the wind field near the ground in tornadoes. VORTEX2 is by far the largest and most ambitious observational and modeling study of tornadoes and tornadic storms ever undertaken. It employed 13 mobile mesonet–instrumented vehicles, 11 ground-based mobile radars (several of which had dual-polarization capability and two of which were phased-array rapid scan), a mobile Doppler lidar, four mobile balloon sounding systems, 42 deployable in situ observational weather stations, an unmanned aerial system, video and photogrammetric teams, damage survey teams, deployable disdrometers, and othe...
Journal of the Atmospheric Sciences | 2003
Paul Markowski; Jerry M. Straka; Erik N. Rasmussen
Abstract Idealized numerical simulations are conducted in which an axisymmetric, moist, rotating updraft free of rain is initiated, after which a downdraft is imposed by precipitation loading. The experiments are designed to emulate a supercell updraft that has rotation aloft initially, followed by the formation of a downdraft and descent of a rain curtain on the rear flank. In the idealized simulations, the rain curtain and downdraft are annular, rather than hook-shaped, as is typically observed. The downdraft transports angular momentum, which is initially a maximum aloft and zero at the surface, toward the ground. Once reaching the ground, the circulation-rich air is converged beneath the updraft and a tornado develops. The intensity and longevity of the tornado depend on the thermodynamic characteristics of the angular momentum-transporting downdraft, which are sensitive to the ambient low-level relative humidity and precipitation character of the rain curtain. For large low-level relative humidity an...
Monthly Weather Review | 1998
Paul Markowski; Jerry M. Straka; Erik N. Rasmussen; David O. Blanchard
In this paper, storm-relative helicity (SRH) and low-level vertical shear of the horizontal wind fields were investigated on the mesoscale and stormscale in regions where tornadoes occurred for four case studies using data collected during the Verification of the Origin of Rotation in Tornadoes Experiment. A primary finding was that SRH was highly variable in both time and space in all of the cases, suggesting that this parameter might be difficult to use to predict which storms might become tornadic given the available National Weather Service upper-air wind data. Second, it was also found that the shear between the lowest mean 500-m wind and the 6-km wind was fairly uniform over vast regions in all of the four cases studied; thus, this parameter provided little guidance other than that there was possibly enough shear to support supercells. It was contended that forecasters will need to monitor low-level features, such as boundaries or wind accelerations, which might augment streamwise vorticity ingested into storms. Finally, it was suggested that one reason why one storm might produce a tornado while a nearby one does not might be due to the large variations in SRH on very small spatial and temporal scales. In other words, only those storms that move into regions, small or large, with sufficient SRH might produce tornadoes.
Weather and Forecasting | 2003
Paul Markowski; Christina Hannon; Jeff Frame; Elise Lancaster; Albert Pietrycha; Roger Edwards; Richard L. Thompson
Abstract Over 400 vertical wind profiles in close proximity to nontornadic and tornadic supercell thunderstorms are examined. The profiles were obtained from the Rapid Update Cycle (RUC) model/analysis system. Ground-relative wind speeds throughout the lower and middle troposphere are larger, on average, in tornadic supercell environments than in nontornadic supercell environments. The average vertical profiles of storm-relative wind speed, vertical wind shear, hodograph curvature, crosswise and streamwise vorticity, and storm-relative helicity are generally similar above 1 km in the tornadic and nontornadic supercell environments, with differences that are either not statistically significant or not what most would regard as meteorologically significant. On the other hand, considerable differences are found in these average vertical profiles within 1 km of the ground, with environments associated with significantly tornadic supercells (those producing tornadoes of at least F2 intensity) having substantia...
Monthly Weather Review | 2012
James Marquis; Yvette Richardson; Paul Markowski; David C. Dowell; Joshua Wurman
AbstractDual-Doppler wind synthesis and ensemble Kalman filter analyses produced by assimilating Doppler-on-Wheels velocity data collected in four tornadic supercells are examined in order to further understand the maintenance of tornadoes. Although tornado-scale features are not resolved in these analyses, larger-scale processes involved with tornado maintenance are well represented.The longest-lived tornado is maintained underneath the midlevel updraft within a zone of low-level horizontal convergence along a rear-flank gust front for a considerable time, and dissipates when horizontally displaced from the midlevel updraft. The shortest-lived tornado resides in a similar zone of low-level convergence briefly, but dissipates underneath the location of the midlevel updraft when the updraft becomes tilted and low-level convergence is displaced several kilometers from the tornado. This suggests that a location beneath the midlevel updraft is not always a sufficient condition for tornado maintenance, particu...
Monthly Weather Review | 2008
Paul Markowski; Erik N. Rasmussen; Jerry M. Straka; Robert Davies-Jones; Yvette Richardson; Robert J. Trapp
Abstract Vortex lines passing through the low-level mesocyclone regions of six supercell thunderstorms (three nontornadic, three tornadic) are computed from pseudo-dual-Doppler airborne radar observations obtained during the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX). In every case, at least some of the vortex lines emanating from the low-level mesocyclones form arches, that is, they extend vertically from the cyclonic vorticity maximum, then turn horizontally (usually toward the south or southwest) and descend into a broad region of anticyclonic vertical vorticity. This region of anticyclonic vorticity is the same one that has been observed almost invariably to accompany the cyclonic vorticity maximum associated with the low-level mesocyclone; the vorticity couplet straddles the hook echo of the supercell thunderstorm. The arching of the vortex lines and the orientation of the vorticity vector along the vortex line arches, compared to the orientation of the ambient (barotrop...