Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Mohapel is active.

Publication


Featured researches published by Paul Mohapel.


Neurobiology of Aging | 2005

Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning.

Paul Mohapel; Giampiero Leanza; Merab Kokaia; Olle Lindvall

Hippocampus-mediated learning enhances neurogenesis in the adult dentate gyrus (DG), and this process has been suggested to be involved in memory formation. The hippocampus receives abundant cholinergic innervation and acetylcholine (ACh) plays an important role in learning and Alzheimers disease (AD) pathophysiology. Here, we show that a selective neurotoxic lesion of forebrain cholinergic input with 192 IgG-saporin reduces DG neurogenesis with a concurrent impairment in spatial memory. Conversely, systemic administration of the cholinergic agonist physostigmine increases DG neurogenesis. We find that changes of forebrain ACh levels primarily influence the proliferation and/or the short-term survival rather than the long-term survival or differentiation of the new neurons. We further demonstrate that these newly born cells express the muscarinic receptor subtypes M1 and M4. Our data provide evidence that forebrain ACh promotes neurogenesis, and suggest that the impaired cholinergic function in AD may in part contribute to deficits in learning and memory through reductions in the formation of new hippocampal neurons.


European Journal of Neurology | 2006

High-fat diet impairs hippocampal neurogenesis in male rats.

Andreas Lindqvist; Paul Mohapel; Brenda Bouter; Helena Frielingsdorf; Donald P. Pizzo; Patrik Brundin; Charlotte Erlanson-Albertsson

High fat diets and obesity pose serious health problems, such as type II diabetes and cardiovascular disease. Impaired cognitive function is also associated with high fat intake. In this study, we show that just 4 weeks of feeding a diet rich in fat ad libitum decreased hippocampal neurogenesis in male, but not female, rats. There was no obesity, but male rats fed a diet rich in fat exhibited elevated serum corticosterone levels compared with those fed standard rat chow. These data indicate that high dietary fat intake can disrupt hippocampal neurogenesis, probably through an increase in serum corticosterone levels, and that males are more susceptible than females.


Behavioural Brain Research | 2005

Behavioral characterization of a unilateral 6-OHDA-lesion model of Parkinson's disease in mice

Ruxandra Iancu; Paul Mohapel; Patrik Brundin; Gesine Paul

Parkinsons disease (PD) is one of the most common neurodegenerative disorders. Several toxin-induced animals models simulate the motor deficits occurring in PD. Among them, the unilateral 6-hydroxydopamine (6-OHDA) model is frequently used in rats and has the advantage of presenting side-biased motor impairments. However, the behavioral consequences of a unilateral 6-OHDA-lesion have, so far, not been described in detail in mice. The aim of this study was to characterize mice with unilateral 6-OHDA-lesions placed in the median forebrain bundle using several motor behavioral tests in order to identify the most suitable predictor of nigral cell loss. Mice underwent various drug-induced (amphetamine- and apomorphine-induced rotation) and spontaneous motor tests (cylinder, rotarod, elevated body swing, and stride length test). The amphetamine-induced rotation test, the cylinder and the rotarod test were most sensitive and reliable in detecting loss of tyrosine hydroxylase-immunoreactive cells in the substantia nigra. This study demonstrates that substantial and stable unilateral 6-OHDA-induced lesions can be established in mice, and that these lesions can be functionally assessed using several different side-bias-based behavioral tests. This mouse model offers the opportunity to use transgenic mouse strains and study the interactions between genes of interest and toxins in relation to Parkinsons disease etiology in the future.


European Journal of Neuroscience | 2002

Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment.

Johan Hellsten; Malin Wennström; Paul Mohapel; Christine T. Ekdahl; Johan Bengzon; Anders Tingström

Major depression is often associated with elevated glucocorticoid levels. High levels of glucocorticoids reduce neurogenesis in the adult rat hippocampus. Electroconvulsive seizures (ECS) can enhance neurogenesis, and we investigated the effects of ECS in rats where glucocorticoid levels were elevated in order to mimic conditions seen in depression. Rats given injections of corticosterone or vehicle for 21 days were at the end of this period treated with either a single or five daily ECSs. Proliferating cells were labelled with bromodeoxyuridine (BrdU). After 3 weeks, BrdU‐positive cells in the dentate gyrus were quantified and analyzed for co‐labelling with the neuronal marker neuron‐specific nuclear protein (NeuN). In corticosterone‐treated rats, neurogenesis was decreased by 75%. This was counteracted by a single ECS. Multiple ECS further increased neurogenesis and no significant differences in BrdU/NeuN positive cells were detected between corticosterone‐ and vehicle‐treated rats given five ECS. Approximately 80% of the cells within the granule cell layer and 10% of the hilar cells were double‐labelled with BrdU and NeuN.


Neurobiology of Disease | 2005

Reduced hippocampal neurogenesis in R6/2 transgenic Huntington's disease mice

Joana M. Gil; Paul Mohapel; Inês M. Araújo; Natalija Popovic; Jia-Yi Li; Patrik Brundin; Åsa Petersén

We investigated whether cell proliferation and neurogenesis are altered in R6/2 transgenic Huntingtons disease mice. Using bromodeoxyuridine (BrdU), we found a progressive decrease in the number of proliferating cells in the dentate gyrus of R6/2 mice. This reduction was detected in pre-symptomatic mice, and by 11.5 weeks, R6/2 mice had 66% fewer newly born cells in the hippocampus. The results were confirmed by immunohistochemistry for the cell cycle markers Ki-67 and proliferating cell nuclear antigen (PCNA). We did not observe changes in cell proliferation in the R6/2 subventricular zone, indicating that the decrease in cell proliferation is specific for the hippocampus. This decrease corresponded to a reduction in actual hippocampal neurogenesis as assessed by double immunostaining for BrdU and the neuronal marker neuronal nuclei (NeuN) and by immunohistochemistry for the neuroblast marker doublecortin. Reduced hippocampal neurogenesis may be a novel neuropathological feature in R6/2 mice that could be assessed when evaluating potential therapies.


Neuroscience | 2005

Platelet-Derived Growth Factor (PDGF-BB) and Brain-Derived Neurotrophic Factor (BDNF) induce striatal neurogenesis in adult rats with 6-hydroxydopamine lesions

Paul Mohapel; Helena Frielingsdorf; J Häggblad; O Zachrisson; Patrik Brundin

The effects of i.c.v. infused platelet-derived growth factor and brain-derived neurotrophic factor on cell genesis, as assessed with bromodeoxyuridine (BrdU) incorporation, were studied in adult rats with unilateral 6-hydroxydopamine lesions. Both growth factors increased the numbers of newly formed cells in the striatum and substantia nigra to an equal extent following 10 days of treatment. At 3 weeks after termination of growth factor treatment, immunostaining of BrdU-labeled cells with the neuronal marker NeuN revealed a significant increase in newly generated neurons in the striatum. In correspondence, many doublecortin-labeled neuroblasts were also observed in the denervated striatum following growth factor treatment. Further evaluation suggested that a subset of these new neurons expresses the early marker for striatal neurons Pbx. However, no BrdU-positive cells were co-labeled with DARPP-32, a protein expressed by mature striatal projection neurons. Both in the striatum and in the substantia nigra there were no indications of any newly born cells differentiating into dopaminergic neurons following growth factor treatment, such that BrdU-labeled cells never co-expressed tyrosine hydroxylase, the rate-limiting enzyme in dopamine synthesis. In conclusion, our results suggest that administration of these growth factors is capable of recruiting new neurons into the striatum of hemiparkinsonian rats.


European Journal of Neuroscience | 2001

Caspase inhibitors increase short-term survival of progenitor-cell progeny in the adult rat dentate gyrus following status epilepticus

Christine T. Ekdahl; Paul Mohapel; Eskil Elmér; Olle Lindvall

The dentate gyrus (DG) is one of the few regions in the brain that continues to produce new neurons throughout adulthood. Seizures not only increase neurogenesis, but also lead to death of DG neurons. We investigated the relationship between cell death and neurogenesis following seizures in the DG of adult rats by blocking caspases, which are key components of apoptotic cell death. Multiple intracerebroventricular infusions of caspase inhibitors (pancaspase inhibitor zVADfmk, and caspase 3 and 9 inhibitor) prior to, just after, 1 day after, and 1 week following 2 h of lithium–pilocarpine‐induced status epilepticus reduced the number of terminal deoxynucleotidyl transferase‐mediated fluorescein‐dUTP nick‐end labelled (TUNEL) cells and increased the number of bromodeoxyuridine (BrdU) ‐stained proliferated cells in the subgranular zone at 1 week. The caspase inhibitor‐treated group did not differ from control at 2 days or 5 weeks following the epileptic insult. Our findings suggest that caspases modulate seizure‐induced neurogenesis in the DG, probably by regulating apoptosis of newly born neurons, and that this action can be suppressed transiently by caspase inhibitors. Furthermore, although previous studies have indicated that increased neuronal death can trigger neurogenesis, we show here that reduction in apoptotic death may be associated with increased neurogenesis.


Progress in Brain Research | 2002

Neuronal apoptosis after brief and prolonged seizures.

Johan Bengzon; Paul Mohapel; Christine Ekdahl Clementson; Olle Lindvall

Evidence has accumulated that apoptotic cell death contributes to brain damage following experimental seizures. A substantial number of degenerating neurons within limbic regions display morphological features of apoptosis following prolonged seizures evoked by systemic or local injections of kainic acid, systemic injections of pilocarpine and sustained stimulation of the perforant path. Although longer periods of seizures consistently result in brain damage, it has previously not been clear whether brief single or intermittent seizures lead to cell death. However, recent results indicate that also single seizures lead to apoptotic neuronal death. A brief, non-convulsive seizure evoked by kindling stimulation was found to produce apoptotic neurons bilaterally in the rat dentate gyrus. The mechanism triggering and mediating apoptotic degeneration is at present being studied. Alterations in the expression and activity of cell-death regulatory proteins such as members of the Bcl-2 family and the cysteinyl aspartate-specific proteinase (caspase) family occur in regions vulnerable to cell degeneration, suggesting an involvement of these factors in mediating apoptosis following seizures. Findings of decreased apoptotic cell death following administration of caspase inhibitors prior to and following experimentally induced status epilepticus, further suggest a role for caspases in seizure-evoked neuronal degeneration. Intermediate forms of cell death with both necrotic and apoptotic features have been found after seizures and investigation into the detailed mechanisms of the different forms of cell degeneration is needed before attempts to specific prevention can be made.


The Journal of Neuroscience | 2006

Endothelial Proliferation and Increased Blood–Brain Barrier Permeability in the Basal Ganglia in a Rat Model of 3,4-Dihydroxyphenyl-l-Alanine-Induced Dyskinesia

Jenny E. Westin; Hanna Lindgren; J.E. Gardi; Jens R. Nyengaard; Patrik Brundin; Paul Mohapel; M. Angela Cenci

3,4-Dihydroxyphenyl-l-alanine (l-DOPA)-induced dyskinesia is associated with molecular and synaptic plasticity in the basal ganglia, but the occurrence of structural remodeling through cell genesis has not been explored. In this study, rats with 6-hydroxydopamine lesions received injections of the thymidine analog 5-bromo-2′-deoxyuridine (BrdU) concomitantly with l-DOPA for 2 weeks. A large number of BrdU-positive cells were found in the striatum and its output structures (globus pallidus, entopeduncular nucleus, and substantia nigra pars reticulata) in l-DOPA-treated rats that had developed dyskinesia. The vast majority (60–80%) of the newborn cells stained positively for endothelial markers. This endothelial proliferation was associated with an upregulation of immature endothelial markers (nestin) and a downregulation of endothelial barrier antigen on blood vessel walls. In addition, dyskinetic rats exhibited a significant increase in total blood vessel length and a visible extravasation of serum albumin in the two structures in which endothelial proliferation was most pronounced (substantia nigra pars reticulata and entopeduncular nucleus). The present study provides the first evidence of angiogenesis and blood–brain barrier dysfunction in an experimental model of l-DOPA-induced dyskinesia. These microvascular changes are likely to affect the kinetics of l-DOPA entry into the brain, favoring the occurrence of motor complications.


Neurobiology of Disease | 2004

Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus.

Paul Mohapel; Christine T. Ekdahl; Olle Lindvall

Status epilepticus (SE) is characterized by continual seizure activity that can vary widely in the intensity of convulsions. We induced seizures by applying continuous electrical stimulation to the hippocampus in adult rats to explore the effects of three different SE states on neurogenesis and neuronal death in the hippocampus. Rats exhibiting the most severe SE state (fully convulsive) demonstrated profound increases in cell proliferation in the dentate gyrus (DG) at 1 week post-insult, but the majority of the new neurons had died at 4 weeks. In contrast, rats exhibiting less severe SE states (ambulatory or masticatory, partial convulsive) had the same degree of cell proliferation at 1 week, but most new neurons survived at 4 weeks. As compared to partially convulsive SE rats, fully convulsive SE rats had significantly greater DG pathology. Our data indicate that SE of varying severity triggers similar short-term proliferation of neural progenitors, but that the long-term outcome of neurogenesis is influenced by the degree of insult-induced degeneration in the DG tissue environment.

Collaboration


Dive into the Paul Mohapel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge