Paul N. Adler
University of Virginia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul N. Adler.
Developmental Cell | 2002
Paul N. Adler
The regulatory mechanisms governing the parallel alignment of hairs, bristles, and ommatidia in Drosophila have all served as model systems for studying planar signaling and tissue level morphogenesis. Polarity in all three systems is mediated by the serpentine receptor Frizzled and a number of additional gene products. The localized accumulation of these proteins within cells plays a key role in the development of planar polarity. A comparison of the function of these gene products in the different cell types suggests cell-specific modifications of the pathway.
Cell | 2004
Kazuo Emoto; Ying He; Bing Ye; Wesley B. Grueber; Paul N. Adler; Lily Yeh Jan; Yuh Nung Jan
To cover the receptive field completely but without redundancy, neurons of certain functional groups exhibit tiling of their dendrites via dendritic repulsion. Here we show that two evolutionarily conserved proteins, the Tricornered (Trc) kinase and Furry (Fry), are essential for tiling and branching control of Drosophila sensory neuron dendrites. Dendrites of fry and trc mutants display excessive terminal branching and fail to avoid homologous dendritic branches, resulting in significant overlap of the dendritic fields. Trc control of dendritic branching involves regulation of RacGTPase, a pathway distinct from the action of Trc in tiling. Timelapse analysis further reveals a specific loss of the ability of growing dendrites to turn away from nearby dendritic branches in fry mutants, suggestive of a defect in like-repels-like avoidance. Thus, the Trc/Fry signaling pathway plays a key role in patterning dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching.
Current Biology | 1997
Paul N. Adler; Randi E. Krasnow; Jingchun Liu
BACKGROUND The frizzled (fz) gene of Drosophila encodes the founding member of the large family of receptors for the Wnt family of signaling molecules. It was originally studied in the adult epidermis, where it plays a key role in the generation of tissue polarity. Mutations in components of the fz signal transduction pathway disrupt tissue polarity; on the wing, hairs normally point distally but their polarity is altered by these mutations. RESULTS We devised a method to induce a gradient of fz expression with the highest levels near the distal wing tip. The result was a large area of proximally pointing hairs in this region. This reversal of polarity was seen when fz expression was induced just before the start of hair morphogenesis when polarity is established, suggesting that the gradient of Fz protein acted fairly directly to reverse hair polarity. A similar induction of the dishevelled (dsh) gene, which acts cell autonomously and functions downstream of fz in the generation of tissue polarity, resulted in a distinct tissue polarity phenotype, but no reversal of polarity; this argues that fz signaling was required for polarity reversal. Furthermore, the finding that functional dsh was required for the reversal of polarity argues that the reversal requires normal fz signal transduction. CONCLUSIONS The data suggest that cells sense the level of Fz protein on neighboring cells and use this information in order to polarize themselves. A polarizing signal is transmitted from cells with higher Fz levels to cells with lower levels. Our observations enable us to propose a general mechanism to explain how Wnts polarize target cells.
Current Opinion in Cell Biology | 2001
Paul N. Adler; Haeryun Lee
The function of the Frizzled pathway is essential for the formation of the array of distally pointing hairs found on the Drosophila wing. Previous research found that regulating the subcellular location for hair initiation controlled hair polarity. Recent work argues a graded Frizzled-dependent signal results in the accumulation of the Frizzled, Dishevelled and Flamingo proteins along the distal edge of the wing cells. This cortical mark leads to the local activation of downstream gene products and the subsequent activation of the cytoskeleton to form a hair.
Mechanisms of Development | 1998
Christopher Turner; Paul N. Adler
We have found that the actin and microtubule cytoskeletons have overlapping, but distinct roles in the morphogenesis of epidermal hairs during Drosophila wing development. The function of both the actin and microtubule cytoskeletons appears to be required for the growth of wing hairs, as treatment of cultured pupal wings with either cytochalasin D or vinblastine was able to slow prehair extension. At higher doses a complete blockage of hair development was seen. The microtubule cytoskeleton is also required for localizing prehair initiation to the distalmost part of the cell. Disruption of the microtubule cytoskeleton resulted in the development of multiple prehairs along the apical cell periphery. The multiple hair cells were a phenocopy of mutations in the inturned group of tissue polarity genes, which are downstream targets of the frizzled signaling/signal transduction pathway. The actin cytoskeleton also plays a role in maintaining prehair integrity during prehair development as treatment of pupal wings with cytochalasin D, which inhibits actin polymerization, led to branched prehairs. This is a phenocopy of mutations in crinkled, and suggests mutations that cause branched hairs will be in genes that encode products that interact with the actin cytoskeleton.
Mechanisms of Development | 2000
Paul N. Adler; Job Taylor; Jeannette Charlton
The frizzled (fz) gene is required for the development of distally pointing hairs on the Drosophila wing. It has been suggested that fz is needed for the propagation of a signal along the proximal distal axis of the wing. The directional domineering non-autonomy of fz clones could be a consequence of a failure in the propagation of this signal. We have tested this hypothesis in two ways. In one set of experiments we used the domineering non-autonomy of fz and Vang Gogh (Vang) clones to assess the direction of planar polarity signaling in the wing. prickle (pk) mutations alter wing hair polarity in a cell autonomous way, so pk cannot be altering a global polarity signal. However, we found that pk mutations altered the direction of the domineering non-autonomy of fz and Vang clones, arguing that this domineering non-autonomy is not due to an alteration in a global signal. In a second series of experiments we ablated cells in the pupal wing. We found that a lack of cells that could be propagating a long-range signal did not alter hair polarity. We suggest that fz and Vang clones result in altered levels of a locally acting signal and the domineering non-autonomy results from wild-type cells responding to this abnormal signal.
Mechanisms of Development | 1994
Woo-Jin Park; Jingchun Liu; Paul N. Adler
The protein encoded by the Drosophila tissue polarity gene, frizzled (fz), is required for both the intercellular transmission and the intracellular transduction of a tissue polarity signal. In order to study the biochemical characteristics of this rare protein, we constructed a hs-fz fusion gene and transferred this to Drosophila tissue culture cells and embryos. Cell fractionation experiments and immunostaining experiments showed that the Fz protein is an integral membrane protein containing an odd number of transmembrane domains, consistent with previous suggestions that it contains seven transmembrane domains. Immunostaining of pupal wings showed that the Fz protein is evenly distributed throughout the wing arguing that the Fz protein does not act as a graded morphogen.
Current Topics in Developmental Biology | 2012
Paul N. Adler
Drosophila has been the key model system for studies on planar cell polarity (PCP). The rich morphology of the insect exoskeleton contains many structures that display PCP. Among these are the trichomes (cuticular hairs) that cover much of the exoskeleton, sensory bristles, and ommatidia. Many genes have been identified that must function for the development of normal PCP. Among these are the genes that comprise the frizzled/starry night (fz/stan) and dachsous/fat pathways. The mechanisms that underlie the function of the fz/stan pathway are best understood. All of the protein products of these genes accumulate asymmetrically in wing cells and there is good evidence that this involves local intercellular signaling between protein complexes on the distal edge of one cell and the juxtaposed proximal edge of its neighbor. It is thought that a feedback system, directed transport, and stabilizing protein-protein interactions mediate the formation of distal and proximal protein complexes. These complexes appear to recruit downstream proteins that function to spatially restrict the activation of the cytoskeleton in wing cells. This leads to the formation of the array of distally pointing hairs found on wings.
Chromosoma | 1996
J. Suso Platero; Edward J. Sharp; Paul N. Adler; Joel C. Eissenberg
The ability of a chimeric HP1-Polycomb (Pc) protein to bind both to heterochromatin and to euchromatic sites of Pc protein binding was exploited to detect stable protein-protein interactions in vivo. Previously, we showed that endogenous Pc protein was recruited to ectopic heterochromatic binding sites by the chimeric protein. Here, we examine the association of other Pc group (Pc-G) proteins. We show that Posterior sex combs (Psc) protein also is recruited to heterochromatin by the chimeric protein, demonstrating that Psc protein participates in direct protein-protein interaction with Pc protein or Pc-associated protein. In flies carrying temperature-sensitive alleles of Enhancer of zeste[E(z)] the general decondensation of polytene chromosomes that occurs at the restrictive temperature is associated with loss of binding of endogenous Pc and chimeric HP1-Polycomb protein to euchromatin, but binding of HP1 and chimeric HP1-Polycomb protein to the heterochromatin is maintained. The E(z) mutation also results in the loss of chimera-dependent binding to heterochromatin by endogenous Pc and Psc proteins at the restrictive temperature, suggesting that interaction of these proteins is mediated by E(z) protein. A myc-tagged full-length Suppressor 2 of zeste [Su(z)2] protein interacts poorly or not at all with ectopic Pc-G complexes, but a truncated Su(z)2 protein is strongly recruited to all sites of chimeric protein binding. Trithorax protein is not recruited to the heterochromatin by the chimeric HP1-Polycomb protein, suggesting either that this protein does not interact directly with Pc-G complexes or that such interactions are regulated. Ectopic binding of chimeric chromosomal proteins provides a useful tool for distinguishing specific protein-protein interactions from specific protein-DNA interactions important for complex assembly in vivo.
Current Biology | 2004
Paul N. Adler; Chunming Zhu; David J. Stone
Planar polarity development in the Drosophila wing is under the control of the frizzled (fz) pathway. Recent work has established that the planar polarity (PP) proteins become localized to either the distal, proximal, or both sides of wing cells. Fz and Dsh distal accumulation is thought to locally activate the cytoskeleton to form a hair . Planar polarity effector (PPE) genes such as inturned (in) are not required for the asymmetric accumulation of PP proteins, but they are required for this to influence hair polarity. in mutations result in abnormal hair polarity and are epistatic to mutations in the PP genes. We report that In localizes to the proximal side of wing cells in a PP-dependent and PP-instructive manner. We further show that the function of two other PPE genes (fuzzy and fritz) is essential for In protein localization, a finding consistent with previous genetic data that suggested these three genes function in a common process. These data indicate that accumulation of proteins at the proximal side of wing cells is a key event for the distal activation of the cytoskeleton to form a hair.