Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul O. Mireji is active.

Publication


Featured researches published by Paul O. Mireji.


PLOS Neglected Tropical Diseases | 2014

Aquaporins are critical for provision of water during lactation and intrauterine progeny hydration to maintain tsetse fly reproductive success.

Joshua B. Benoit; Immo A. Hansen; Geoffrey M. Attardo; Veronika Michalkova; Paul O. Mireji; Joel L. Bargul; Lisa L. Drake; Daniel K. Masiga; Serap Aksoy

Tsetse flies undergo drastic fluctuations in their water content throughout their adult life history due to events such as blood feeding, dehydration and lactation, an essential feature of the viviparous reproductive biology of tsetse. Aquaporins (AQPs) are transmembrane proteins that allow water and other solutes to permeate through cellular membranes. Here we identify tsetse aquaporin (AQP) genes, examine their expression patterns under different physiological conditions (blood feeding, lactation and stress response) and perform functional analysis of three specific genes utilizing RNA interference (RNAi) gene silencing. Ten putative aquaporins were identified in the Glossina morsitans morsitans (Gmm) genome, two more than has been previously documented in any other insect. All organs, tissues, and body parts examined had distinct AQP expression patterns. Two AQP genes, gmmdripa and gmmdripb ( = gmmaqp1a and gmmaqp1b) are highly expressed in the milk gland/fat body tissues. The whole-body transcript levels of these two genes vary over the course of pregnancy. A set of three AQPs (gmmaqp5, gmmaqp2a, and gmmaqp4b) are expressed highly in the Malpighian tubules. Knockdown of gmmdripa and gmmdripb reduced the efficiency of water loss following a blood meal, increased dehydration tolerance and reduced heat tolerance of adult females. Knockdown of gmmdripa extended pregnancy length, and gmmdripb knockdown resulted in extended pregnancy duration and reduced progeny production. We found that knockdown of AQPs increased tsetse milk osmolality and reduced the water content in developing larva. Combined knockdown of gmmdripa, gmmdripb and gmmaqp5 extended pregnancy by 4–6 d, reduced pupal production by nearly 50%, increased milk osmolality by 20–25% and led to dehydration of feeding larvae. Based on these results, we conclude that gmmDripA and gmmDripB are critical for diuresis, stress tolerance and intrauterine lactation through the regulation of water and/or other uncharged solutes.


Medical and Veterinary Entomology | 2010

Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae

Paul O. Mireji; Joseph Keating; Ahmed Hassanali; Charles M. Mbogo; M. N. Muturi; John I. Githure; John C. Beier

The global rate of heavy metal pollution is rapidly increasing in various habitats. Anopheles malaria vector species (Diptera: Culicidae) appear to tolerate many aquatic habitats with metal pollutants, despite their normal proclivity for ‘clean’ water (i.e. low levels of organic matter). Investigations were conducted to establish whether there are biological costs for tolerance to heavy metals in Anopheles gambiae Giles sensu stricto and to assess the potential impact of heavy metal pollution on mosquito ecology. Anopheles gambiae s.s. were selected for cadmium, copper or lead tolerance through chronic exposure of immature stages to solutions of the metals for three successive generations. Biological costs were assessed in the fourth generation by horizontal life table analysis. Tolerance in larvae to cadmium (as cadmium chloride, CdCl2), copper [as copper II nitrate hydrate, Cu(NO3)2 2.5 H2O] and lead [as lead II nitrate, Pb(NO3)2], monitored by changes in LC50 concentrations of the metals, changed from 6.07 µg/L, 12.42 µg/L and 493.32 µg/L to 4.45 µg/L, 25.02 µg/L and 516.69 µg/L, respectively, after three generations of exposure. The metal‐selected strains had a significantly lower magnitude of egg viability, larval and pupal survivorship, adult emergence, fecundity and net reproductive rate than the control strain. The population doubling times were significantly longer and the instantaneous birth rates lower in most metal‐selected strains relative to the control strain. Our results suggest that although An. gambiae s.s. displays the potential to develop tolerance to heavy metals, particularly copper, this may occur at a significant biological cost, which can adversely affect its ecological fitness.


Molecular and Cellular Endocrinology | 2013

Juvenile hormone and insulin suppress lipolysis between periods of lactation during tsetse fly pregnancy

Aaron A. Baumann; Joshua B. Benoit; Veronika Michalkova; Paul O. Mireji; Geoffrey M. Attardo; John K. Moulton; Thomas G. Wilson; Serap Aksoy

Tsetse flies are viviparous insects that nurture a single intrauterine progeny per gonotrophic cycle. The developing larva is nourished by the lipid-rich, milk-like secretions from a modified female accessory gland (milk gland). An essential feature of the lactation process involves lipid mobilization for incorporation into the milk. In this study, we examined roles for juvenile hormone (JH) and insulin/IGF-like (IIS) signaling pathways during tsetse pregnancy. In particular, we examined the roles for these pathways in regulating lipid homeostasis during transitions between non-lactating (dry) and lactating periods. The dry period occurs over the course of oogenesis and embryogenesis, while the lactation period spans intrauterine larvigenesis. Genes involved in the JH and IIS pathways were upregulated during dry periods, correlating with lipid accumulation between bouts of lactation. RNAi suppression of Forkhead Box Sub Group O (FOXO) expression impaired lipolysis during tsetse lactation and reduced fecundity. Similar reduction of the JH receptor Methoprene tolerant (Met), but not its paralog germ cell expressed (gce), reduced lipid accumulation during dry periods, indicating functional divergence between Met and gce during tsetse reproduction. Reduced lipid levels following Met knockdown led to impaired fecundity due to inadequate fat reserves at the initiation of milk production. Both the application of the JH analog (JHA) methoprene and injection of insulin into lactating females increased stored lipids by suppressing lipolysis and reduced transcripts of lactation-specific genes, leading to elevated rates of larval abortion. To our knowledge, this study is the first to address the molecular physiology of JH and IIS in a viviparous insect, and specifically to provide a role for JH signaling through Met in the regulation of lipid metabolism during insect lactation.


PLOS Neglected Tropical Diseases | 2014

Odorant and Gustatory Receptors in the Tsetse Fly Glossina morsitans morsitans

George Obiero; Paul O. Mireji; Steven G. Nyanjom; Alan Christoffels; Hugh M. Robertson; Daniel K. Masiga

Tsetse flies use olfactory and gustatory responses, through odorant and gustatory receptors (ORs and GRs), to interact with their environment. Glossina morsitans morsitans genome ORs and GRs were annotated using homologs of these genes in Drosophila melanogaster and an ab initio approach based on OR and GR specific motifs in G. m. morsitans gene models coupled to gene ontology (GO). Phylogenetic relationships among the ORs or GRs and the homologs were determined using Maximum Likelihood estimates. Relative expression levels among the G. m. morsitans ORs or GRs were established using RNA-seq data derived from adult female fly. Overall, 46 and 14 putative G. m. morsitans ORs and GRs respectively were recovered. These were reduced by 12 and 59 ORs and GRs respectively compared to D. melanogaster. Six of the ORs were homologous to a single D. melanogaster OR (DmOr67d) associated with mating deterrence in females. Sweet taste GRs, present in all the other Diptera, were not recovered in G. m. morsitans. The GRs associated with detection of CO2 were conserved in G. m. morsitans relative to D. melanogaster. RNA-sequence data analysis revealed expression of GmmOR15 locus represented over 90% of expression profiles for the ORs. The G. m. morsitans ORs or GRs were phylogenetically closer to those in D. melanogaster than to other insects assessed. We found the chemoreceptor repertoire in G. m. morsitans smaller than other Diptera, and we postulate that this may be related to the restricted diet of blood-meal for both sexes of tsetse flies. However, the clade of some specific receptors has been expanded, indicative of their potential importance in chemoreception in the tsetse.


PLOS Genetics | 2014

A Novel Highly Divergent Protein Family Identified from a Viviparous Insect by RNA-seq Analysis: A Potential Target for Tsetse Fly-Specific Abortifacients

Joshua B. Benoit; Geoffrey M. Attardo; Veronika Michalkova; Tyler B. Krause; Jana Bohova; Qirui Zhang; Aaron A. Baumann; Paul O. Mireji; Peter Takac; David L. Denlinger; José M. C. Ribeiro; Serap Aksoy

In tsetse flies, nutrients for intrauterine larval development are synthesized by the modified accessory gland (milk gland) and provided in mothers milk during lactation. Interference with at least two milk proteins has been shown to extend larval development and reduce fecundity. The goal of this study was to perform a comprehensive characterization of tsetse milk proteins using lactation-specific transcriptome/milk proteome analyses and to define functional role(s) for the milk proteins during lactation. Differential analysis of RNA-seq data from lactating and dry (non-lactating) females revealed enrichment of transcripts coding for protein synthesis machinery, lipid metabolism and secretory proteins during lactation. Among the genes induced during lactation were those encoding the previously identified milk proteins (milk gland proteins 1–3, transferrin and acid sphingomyelinase 1) and seven new genes (mgp4–10). The genes encoding mgp2–10 are organized on a 40 kb syntenic block in the tsetse genome, have similar exon-intron arrangements, and share regions of amino acid sequence similarity. Expression of mgp2–10 is female-specific and high during milk secretion. While knockdown of a single mgp failed to reduce fecundity, simultaneous knockdown of multiple variants reduced milk protein levels and lowered fecundity. The genomic localization, gene structure similarities, and functional redundancy of MGP2–10 suggest that they constitute a novel highly divergent protein family. Our data indicates that MGP2–10 function both as the primary amino acid resource for the developing larva and in the maintenance of milk homeostasis, similar to the function of the mammalian casein family of milk proteins. This study underscores the dynamic nature of the lactation cycle and identifies a novel family of lactation-specific proteins, unique to Glossina sp., that are essential to larval development. The specificity of MGP2–10 to tsetse and their critical role during lactation suggests that these proteins may be an excellent target for tsetse-specific population control approaches.


Ecotoxicology and Environmental Safety | 2010

Expression of metallothionein and α-tubulin in heavy metal-tolerant Anopheles gambiae sensu stricto (Diptera: Culicidae)

Paul O. Mireji; Joseph Keating; Ahmed Hassanali; Daniel E. Impoinvil; Charles M. Mbogo; Martha N. Muturi; H. N. Nyambaka; Eucharia U. Kenya; John I. Githure; John C. Beier

Anopheles mosquitoes have been shown to adapt to heavy metals in their natural habitats. In this study we explored the possibility of using Anopheles gambiae sensu stricto as bio-reporters for environmental heavy metal pollution through expressions of their metal-responsive metallothionein and alpha-tubulin genes. The study was undertaken with third instar larvae after selection by cadmium, copper, or lead at LC(30) through five successive generations. Expression levels were determined in the 5th generation by semi-quantitative RT-PCR on the experimental and control populations. The data were analyzed using one-way ANOVA. The highest metallothionein (F(3,11)=4.574, P=0.038) and alpha-tubulin (F(3,11)=12.961, P=0.002) responses were observed in cadmium-tolerant treatments. There was significantly higher expression of metallothionein in cadmium or copper treatments relative to the control (P=0.012), and in cadmium than in lead treatments (P=0.044). Expressions of alpha-tubulin were significantly higher in cadmium than in control treatments (P=0.008). These results demonstrate the capacity of An. gambiae s.s. to develop tolerance to increased levels of heavy metal challenge. The results also confirm the potential of heavy metal-responsive genes in mosquitoes as possible bio-indicators of heavy metal environmental pollution. How the tolerance and expressions relate to An. gambiae s.s. fitness and vectorial capacity in the environment remains to be elucidated.


Acta Tropica | 2012

Changes in genotypes of Plasmodium falciparum human malaria parasite following withdrawal of chloroquine in Tiwi, Kenya.

Clarence M. Mang’era; Fiona N. Mbai; Irene A. Omedo; Paul O. Mireji; Sabah A. Omar

Chloroquine (CQ) drug was withdrawn in 1998 as a first-line treatment of uncomplicated malaria in Kenya. This was in response to resistance to the drug in Plasmodium falciparum malaria parasite. Investigations were conducted to determine prevalence of CQ resistance genotypes in the parasites in Tiwi, a malaria endemic town in Kenya, before and about a decade after the withdrawal of the drug. Blood samples were collected and spotted on filter papers in 1999 and 2008 from 75 and 77 out-patients respectively with uncomplicated malaria. The sampling was conducted using finger pricking technique. DNA was extracted from individual spots in the papers and screened for the presence of P. falciparum chloroquine resistance transporter (Pfcrt) and multi drug resistance (Pfmdr-1) markers using nested PCR. Nature of mutations (haplotypes) in the Pfcrt and Pfmdr-1 markers in the samples were confirmed using dot blot hybridization technique. Changes in pattern of CQ resistance in the parasite samples in 1999 and 2008 were assessed by Chi Square test. There was a significant (P<0.05) reduction in CQ resistant genotypes of the parasite between 1999 and 2008. Pfmdr and Pfcrt CQ resistant genotypes in 2008 reduced to 54.10 and 63.64% respectively, from 75.39 and 88.0% respectively in 1999. This reduction was accompanied by emergence of Pfcrt specific CQ sensitive (IEK) and intermediate/partially CQ resistant (MET) haplotypes. Results suggest significant reversal of the phenotype of the parasite from chloroquine resistant to wild/sensitive type. The novel haplotypes indicates transitional phase of the parasite to the wild type. Current prevalence of chloroquine resistant genotype is definitely above the threshold for efficacious re-introduction of chloroquine for treatment of malaria in Tiwi.


Vector-borne and Zoonotic Diseases | 2014

Blood Meal Analysis and Virus Detection in Blood-Fed Mosquitoes Collected During the 2006–2007 Rift Valley Fever Outbreak in Kenya

Joel Lutomiah; David Omondi; Daniel K. Masiga; Collins Mutai; Paul O. Mireji; Juliette R. Ongus; Ken J. Linthicum; Rosemary Sang

BACKGROUND Rift Valley fever (RVF) is a zoonosis of domestic ruminants in Africa. Blood-fed mosquitoes collected during the 2006-2007 RVF outbreak in Kenya were analyzed to determine the virus infection status and animal source of the blood meals. MATERIALS AND METHODS Blood meals from individual mosquito abdomens were screened for viruses using Vero cells and RT-PCR. DNA was also extracted and the cytochrome c oxidase 1 (CO1) and cytochrome b (cytb) genes amplified by PCR. Purified amplicons were sequenced and queried in GenBank and Barcode of Life Database (BOLD) to identify the putative blood meal sources. RESULTS The predominant species in Garissa were Aedes ochraceus, (n=561, 76%) and Ae. mcintoshi, (n=176, 24%), and Mansonia uniformis, (n=24, 72.7%) in Baringo. Ae. ochraceus fed on goats (37.6%), cattle (16.4%), donkeys (10.7%), sheep (5.9%), and humans (5.3%). Ae. mcintoshi fed on the same animals in almost equal proportions. RVFV was isolated from Ae. ochraceus that had fed on sheep (4), goats (3), human (1), cattle (1), and unidentified host (1), with infection and dissemination rates of 1.8% (10/561) and 50% (5/10), respectively, and 0.56% (1/176) and 100% (1/1) in Ae. mcintoshi. In Baringo, Ma. uniformis fed on sheep (38%), frogs (13%), duikers (8%), cattle (4%), goats (4%), and unidentified hosts (29%), with infection and dissemination rates of 25% (6/24) and 83.3% (5/6), respectively. Ndumu virus (NDUV) was also isolated from Ae. ochraceus with infection and dissemination rates of 2.3% (13/561) and 76.9% (10/13), and Ae. mcintoshi, 2.8% (5/176) and 80% (4/5), respectively. Ten of the infected Ae. ochraceus had fed on goats, sheep (1), and unidentified hosts (2), and Ae. mcintoshi on goats (3), camel (1), and donkey (1). CONCLUSION This study has demonstrated that RVFV and NDUV were concurrently circulating during the outbreak, and sheep and goats were the main amplifiers of these viruses respectively.


Malaria Journal | 2014

High-resolution melting analysis reveals low Plasmodium parasitaemia infections among microscopically negative febrile patients in western Kenya

Purity N Kipanga; David Omondi; Paul O. Mireji; Patrick Sawa; Daniel K. Masiga; Jandouwe Villinger

BackgroundMicroscopy and rapid diagnostic tests (RDTs) are common tools for diagnosing malaria, but are deficient in detecting low Plasmodium parasitaemia. A novel molecular diagnostic tool (nPCR-HRM) that combines the sensitivity and specificity of nested PCR (nPCR) and direct PCR-high resolution melting analysis (dPCR-HRM) was developed. To evaluate patterns of anti-malarial drug administration when no parasites are detected, nPCR-HRM was employed to screen blood samples for low parasitaemia from febrile patients without microscopically detectable Plasmodium infections in a rural malaria-endemic setting.MethodsBlood samples (n = 197) were collected in two islands of Lake Victoria, Kenya, from febrile patients without Plasmodium detectable by microscopy or RDTs. 18S rRNA gene sequences were amplified from extracted DNA by nPCR-HRM, nPCR, and dPCR-HRM to detect and differentiate Plasmodium parasites. The limits of detection (LoD) were compared using serial dilutions of the WHO International Standard for P. falciparum DNA. Data on administration of anti-malarials were collected to estimate prescription of anti-malarial drugs to patients with and without low parasitaemia Plasmodium infections.ResultsThe coupled nPCR-HRM assay detected Plasmodium parasites with greater sensitivity (LoD = 236 parasites/mL) than either nPCR (LoD = 4,700 parasites/mL) or dPCR-HRM (LoD = 1,490 parasites/mL). Moreover, nPCR-HRM detected and differentiated low-parasitaemia infections in significantly greater proportions of patients than did either nPCR or dPCR-HRM (p-value <0.001). Among these low-parasitaemia infections, 67.7% of patients were treated with anti-malarials, whereas 81.5% of patients not infected with Plasmodium parasites were treated with anti-malarials.ConclusionsThe enhanced sensitivity of nPCR-HRM demonstrates limitations of differential febrile illness diagnostics in rural malaria endemic settings that confound epidemiological estimates of malaria, and lead to inadvertent misadministration of anti-malarial drugs. This is the first study that employs low-parasitaemia Plasmodium diagnostics to quantify the prescription of anti-malarial drugs to both non-malaria febrile patients and patients with low-parasitaemia Plasmodium infections. nPCR-HRM enhances low-parasitaemia malaria diagnosis and can potentially surmount the deficiencies of microscopy and RDT-based results in determining low-parasitaemia Plasmodium infection rates for evaluating malaria elimination efforts. The findings highlight the need for improved differential diagnostics of febrile illness in remote malaria endemic regions.


Malaria Journal | 2013

Sex-specific induction of CYP6 cytochrome P450 genes in cadmium and lead tolerant Anopheles gambiae

Fauzia K Musasia; Alfred Orina Isaac; Daniel K. Masiga; Irene A. Omedo; Ramadhan Mwakubambanya; Richard Ochieng; Paul O. Mireji

BackgroundAnopheles gambiae, one of the main Afro-tropical mosquito vector of malaria, has adapted to heavy metals in its natural habitat, and developed resistance to most conventional insecticides. Investigations were conducted to establish an association between tolerance to cadmium or lead-heavy metals, and expression of specific genes for cytochrome p450 enzymes associated with pyrethroid resistance in the mosquito.MethodsJuvenile aquatic stages of the mosquito were selected for tolerance to cadmiun or lead through chronic exposure of the stages to maximum acceptable toxicant concentrations (MATCs) of the metals. Using real-time quantitative polymerase chain reaction (qPCR), three replicates each of male or female cadmium or lead-tolerant individuals and relevant controls were separately screened for expression of CYP6M2, CYP6P3 and CYP6Z1 genes. The variance in expression levels of the genes amongst the treatments was compared by ANOVA statistical tool.ResultsExpressions of all the genes were significantly lower (P <0.05) in females than in males. Within gender, there 1.3 - 2.3 or 3.1-4.2-fold reduction in expression of the genes in cadmium or lead selected than respective control populations. Expression of all the classes of gene was elevated in cadmium selected female populations relative to their respective controls.ConclusionThese findings suggest that tolerance to cadmium or lead in the mosquito can influence response in cytochrome p450 genes associated with metabolism of pyrethroids in the mosquito in a sex-specific manner. This can, in turn, affect sensitivity of the mosquito to pyrethroids and other xenobiotics associated with these genes, with potential implications in mosquito vector control operations.

Collaboration


Dive into the Paul O. Mireji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel K. Masiga

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Achinko

International Centre of Insect Physiology and Ecology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge