Paul Overvoorde
Macalester College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul Overvoorde.
Cold Spring Harbor Perspectives in Biology | 2010
Paul Overvoorde; Hidehiro Fukaki; Tom Beeckman
A plants roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.
Current Biology | 2010
Bert De Rybel; Valya Vassileva; Boris Parizot; Marlies Demeulenaere; Wim Grunewald; Dominique Audenaert; Jelle Van Campenhout; Paul Overvoorde; Leentje Jansen; Steffen Vanneste; Barbara Möller; Michael Wilson; Tara J. Holman; Gert Van Isterdael; Géraldine Brunoud; Marnik Vuylsteke; Teva Vernoux; Lieven De Veylder; Dirk Inzé; Dolf Weijers; Malcolm J. Bennett; Tom Beeckman
BACKGROUND Lateral roots are formed at regular intervals along the main root by recurrent specification of founder cells. To date, the mechanism by which branching of the root system is controlled and founder cells become specified remains unknown. RESULTS Our study reports the identification of the auxin regulatory components and their target gene, GATA23, which control lateral root founder cell specification. Initially, a meta-analysis of lateral root-related transcriptomic data identified the GATA23 transcription factor. GATA23 is expressed specifically in xylem pole pericycle cells before the first asymmetric division and is correlated with oscillating auxin signaling maxima in the basal meristem. Also, functional studies revealed that GATA23 controls lateral root founder cell identity. Finally, we show that an Aux/IAA28-dependent auxin signaling mechanism in the basal meristem controls GATA23 expression. CONCLUSIONS We have identified the first molecular components that control lateral root founder cell identity in the Arabidopsis root. These include an IAA28-dependent auxin signaling module in the basal meristem region that regulates GATA23 expression and thereby lateral root founder cell specification and root branching patterns.
Plant Journal | 2012
Angela K. Spartz; Sang H. Lee; Jonathan P. Wenger; Nathalie Gonzalez; Hironori Itoh; Dirk Inzé; Wendy Ann Peer; Angus S. Murphy; Paul Overvoorde; William M. Gray
The plant hormone auxin controls numerous aspects of plant growth and development by regulating the expression of hundreds of genes. SMALL AUXIN UP RNA (SAUR) genes comprise the largest family of auxin-responsive genes, but their function is unknown. Although prior studies have correlated the expression of some SAUR genes with auxin-mediated cell expansion, genetic evidence implicating SAURs in cell expansion has not been reported. The Arabidopsis SAUR19, SAUR20, SAUR21, SAUR22, SAUR23, and SAUR24 (SAUR19-24) genes encode a subgroup of closely related SAUR proteins. We demonstrate that these SAUR proteins are highly unstable in Arabidopsis. However, the addition of an N-terminal GFP or epitope tag dramatically increases the stability of SAUR proteins. Expression of these stabilized SAUR fusion proteins in Arabidopsis confers numerous auxin-related phenotypes indicative of increased and/or unregulated cell expansion, including increased hypocotyl and leaf size, defective apical hook maintenance, and altered tropic responses. Furthermore, seedlings expressing an artificial microRNA targeting multiple members of the SAUR19-24 subfamily exhibit short hypocotyls and reduced leaf size. Together, these findings demonstrate that SAUR19-24 function as positive effectors of cell expansion. This regulation may be achieved through the modulation of auxin transport, as SAUR gain-of-function and loss-of-function seedlings exhibit increased and reduced basipetal indole-3-acetic acid transport, respectively. Consistent with this possibility, SAUR19-24 proteins predominantly localize to the plasma membrane.
The Plant Cell | 2014
Angela K. Spartz; Hong Ren; Mee Yeon Park; Kristin N. Grandt; Sang Ho Lee; Angus S. Murphy; Michael R. Sussman; Paul Overvoorde; William M. Gray
This study demonstrates that SMALL AUXIN UP-RNA (SAUR) proteins negatively regulate PP2C-D family phosphatases to modulate the phosphorylation status and activity of plasma membrane H+-ATPases to promote cell expansion. This work provides crucial molecular and genetic support for the decades-old acid growth theory of auxin-mediated cell expansion. The plant hormone auxin promotes cell expansion. Forty years ago, the acid growth theory was proposed, whereby auxin promotes proton efflux to acidify the apoplast and facilitate the uptake of solutes and water to drive plant cell expansion. However, the underlying molecular and genetic bases of this process remain unclear. We have previously shown that the SAUR19-24 subfamily of auxin-induced SMALL AUXIN UP-RNA (SAUR) genes promotes cell expansion. Here, we demonstrate that SAUR proteins provide a mechanistic link between auxin and plasma membrane H+-ATPases (PM H+-ATPases) in Arabidopsis thaliana. Plants overexpressing stabilized SAUR19 fusion proteins exhibit increased PM H+-ATPase activity, and the increased growth phenotypes conferred by SAUR19 overexpression are dependent upon normal PM H+-ATPase function. We find that SAUR19 stimulates PM H+-ATPase activity by promoting phosphorylation of the C-terminal autoinhibitory domain. Additionally, we identify a regulatory mechanism by which SAUR19 modulates PM H+-ATPase phosphorylation status. SAUR19 as well as additional SAUR proteins interact with the PP2C-D subfamily of type 2C protein phosphatases. We demonstrate that these phosphatases are inhibited upon SAUR binding, act antagonistically to SAURs in vivo, can physically interact with PM H+-ATPases, and negatively regulate PM H+-ATPase activity. Our findings provide a molecular framework for elucidating auxin-mediated control of plant cell expansion.
CBE- Life Sciences Education | 2010
Christopher D. Shaffer; Consuelo J. Alvarez; Cheryl Bailey; Daron C. Barnard; Satish C. Bhalla; Chitra Chandrasekaran; Vidya Chandrasekaran; Hui-Min Chung; Douglas R Dorer; Chunguang Du; Todd T. Eckdahl; Jeff L Poet; Donald Frohlich; Anya Goodman; Yuying Gosser; Charles Hauser; Laura L. Mays Hoopes; Diana Johnson; Christopher J. Jones; Marian Kaehler; Nighat P. Kokan; Olga R Kopp; Gary Kuleck; Gerard P. McNeil; Robert Moss; Jennifer L Myka; Alexis Nagengast; Robert W. Morris; Paul Overvoorde; Elizabeth Shoop
Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.
Science | 2008
David Lopatto; Consuelo J. Alvarez; Daron C. Barnard; Chitra Chandrasekaran; Hui-Min Chung; Chunguang Du; Todd T. Eckdahl; Anya Goodman; Charles Hauser; Christopher J. Jones; Olga R Kopp; Gary Kuleck; Gerard P. McNeil; Robert W. Morris; J. L. Myka; Alexis Nagengast; Paul Overvoorde; Jeffrey L. Poet; Kelynne E. Reed; G. Regisford; Dennis Revie; Anne G. Rosenwald; Kenneth Saville; Mary Shaw; Gary R. Skuse; Christopher D. Smith; Mary A. Smith; Mary Spratt; Joyce Stamm; Jeffrey S. Thompson
The Genomics Education Partnership offers an inclusive model for undergraduate research experiences, with students pooling their work to contribute to international databases.
Nature Chemical Biology | 2012
Bert De Rybel; Dominique Audenaert; Wei Xuan; Paul Overvoorde; Lucia C. Strader; Stefan Kepinski; Rebecca C. Hoye; Ronald G. Brisbois; Boris Parizot; Steffen Vanneste; Xing Liu; Alison D. Gilday; Ian A. Graham; Long Nguyen; Leentje Jansen; Maria Fransiska Njo; Dirk Inzé; Bonnie Bartel; Tom Beeckman
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.
CBE- Life Sciences Education | 2014
Christopher D. Shaffer; Consuelo J. Alvarez; April E. Bednarski; David Dunbar; Anya Goodman; Catherine Reinke; Anne G. Rosenwald; Michael J. Wolyniak; Cheryl Bailey; Daron C. Barnard; Christopher Bazinet; Dale L. Beach; James E. J. Bedard; Satish C. Bhalla; John M. Braverman; Martin G. Burg; Vidya Chandrasekaran; Hui-Min Chung; Kari Clase; Randall J. DeJong; Justin R. DiAngelo; Chunguang Du; Todd T. Eckdahl; Heather L. Eisler; Julia A. Emerson; Amy Frary; Donald Frohlich; Yuying Gosser; Shubha Govind; Adam Haberman
While course-based research in genomics can generate both knowledge gains and a greater appreciation for how science is done, a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. Nonetheless, this is a very cost-effective way to reach larger numbers of students.
CBE- Life Sciences Education | 2014
David Lopatto; Charles Hauser; Christopher J. Jones; Don W. Paetkau; Vidya Chandrasekaran; David Dunbar; Christy MacKinnon; Joyce Stamm; Consuelo J. Alvarez; Daron C. Barnard; James E. J. Bedard; April E. Bednarski; Satish C. Bhalla; John M. Braverman; Martin G. Burg; Hui-Min Chung; Randall J. DeJong; Justin R. DiAngelo; Chunguang Du; Todd T. Eckdahl; Julia A. Emerson; Amy Frary; Donald Frohlich; Anya Goodman; Yuying Gosser; Shubha Govind; Adam Haberman; Amy T. Hark; Arlene J. Hoogewerf; Diana Johnson
There have been numerous calls to engage students in science as science is done. A survey of 90-plus faculty members explores barriers and incentives when developing a research-based genomics course. The results indicate that a central core supporting a national experiment can help overcome local obstacles.
Plant Cell Tissue and Organ Culture | 2009
Badara Gueye; Fabienne Morcillo; Myriam Collin; Daniel Gargani; Paul Overvoorde; Frédérique Aberlenc-Bertossi; Timothy John Tranbarger; Djibril Sané; James W. Tregear; Alain Borgel; Jean-Luc Verdeil