Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul P. Gardner is active.

Publication


Featured researches published by Paul P. Gardner.


Nucleic Acids Research | 2009

Rfam: updates to the RNA families database.

Paul P. Gardner; Jennifer Daub; John G. Tate; Eric P. Nawrocki; Diana L. Kolbe; Stinus Lindgreen; Adam C. Wilkinson; Robert D. Finn; Sam Griffiths-Jones; Sean R. Eddy; Alex Bateman

Rfam is a collection of RNA sequence families, represented by multiple sequence alignments and covariance models (CMs). The primary aim of Rfam is to annotate new members of known RNA families on nucleotide sequences, particularly complete genomes, using sensitive BLAST filters in combination with CMs. A minority of families with a very broad taxonomic range (e.g. tRNA and rRNA) provide the majority of the sequence annotations, whilst the majority of Rfam families (e.g. snoRNAs and miRNAs) have a limited taxonomic range and provide a limited number of annotations. Recent improvements to the website, methodologies and data used by Rfam are discussed. Rfam is freely available on the Web at http://rfam.sanger.ac.uk/and http://rfam.janelia.org/.


Nucleic Acids Research | 2013

Rfam 11.0: 10 years of RNA families

Sarah W. Burge; Jennifer Daub; Ruth Y. Eberhardt; John G. Tate; Lars Barquist; Eric P. Nawrocki; Sean R. Eddy; Paul P. Gardner; Alex Bateman

The Rfam database (available via the website at http://rfam.sanger.ac.uk and through our mirror at http://rfam.janelia.org) is a collection of non-coding RNA families, primarily RNAs with a conserved RNA secondary structure, including both RNA genes and mRNA cis-regulatory elements. Each family is represented by a multiple sequence alignment, predicted secondary structure and covariance model. Here we discuss updates to the database in the latest release, Rfam 11.0, including the introduction of genome-based alignments for large families, the introduction of the Rfam Biomart as well as other user interface improvements. Rfam is available under the Creative Commons Zero license.


Nucleic Acids Research | 2015

Rfam 12.0: updates to the RNA families database

Eric P. Nawrocki; Sarah W. Burge; Alex Bateman; Jennifer Daub; Ruth Y. Eberhardt; Sean R. Eddy; Evan W. Floden; Paul P. Gardner; Thomas A. Jones; John G. Tate; Robert D. Finn

The Rfam database (available at http://rfam.xfam.org) is a collection of non-coding RNA families represented by manually curated sequence alignments, consensus secondary structures and annotation gathered from corresponding Wikipedia, taxonomy and ontology resources. In this article, we detail updates and improvements to the Rfam data and website for the Rfam 12.0 release. We describe the upgrade of our search pipeline to use Infernal 1.1 and demonstrate its improved homology detection ability by comparison with the previous version. The new pipeline is easier for users to apply to their own data sets, and we illustrate its ability to annotate RNAs in genomic and metagenomic data sets of various sizes. Rfam has been expanded to include 260 new families, including the well-studied large subunit ribosomal RNA family, and for the first time includes information on short sequence- and structure-based RNA motifs present within families.


Nucleic Acids Research | 2011

Rfam: Wikipedia, clans and the “decimal” release

Paul P. Gardner; Jennifer Daub; John G. Tate; Benjamin L. Moore; Isabelle H. Osuch; Sam Griffiths-Jones; Robert D. Finn; Eric P. Nawrocki; Diana L. Kolbe; Sean R. Eddy; Alex Bateman

The Rfam database aims to catalogue non-coding RNAs through the use of sequence alignments and statistical profile models known as covariance models. In this contribution, we discuss the pros and cons of using the online encyclopedia, Wikipedia, as a source of community-derived annotation. We discuss the addition of groupings of related RNA families into clans and new developments to the website. Rfam is available on the Web at http://rfam.sanger.ac.uk.


BMC Bioinformatics | 2004

A comprehensive comparison of comparative RNA structure prediction approaches

Paul P. Gardner; Robert Giegerich

BackgroundAn increasing number of researchers have released novel RNA structure analysis and prediction algorithms for comparative approaches to structure prediction. Yet, independent benchmarking of these algorithms is rarely performed as is now common practice for protein-folding, gene-finding and multiple-sequence-alignment algorithms.ResultsHere we evaluate a number of RNA folding algorithms using reliable RNA data-sets and compare their relative performance.ConclusionsWe conclude that comparative data can enhance structure prediction but structure-prediction-algorithms vary widely in terms of both sensitivity and selectivity across different lengths and homologies. Furthermore, we outline some directions for future research.


Nucleic Acids Research | 2005

A benchmark of multiple sequence alignment programs upon structural RNAs

Paul P. Gardner; Andreas Wilm; Stefan Washietl

To date, few attempts have been made to benchmark the alignment algorithms upon nucleic acid sequences. Frequently, sophisticated PAM or BLOSUM like models are used to align proteins, yet equivalents are not considered for nucleic acids; instead, rather ad hoc models are generally favoured. Here, we systematically test the performance of existing alignment algorithms on structural RNAs. This work was aimed at achieving the following goals: (i) to determine conditions where it is appropriate to apply common sequence alignment methods to the structural RNA alignment problem. This indicates where and when researchers should consider augmenting the alignment process with auxiliary information, such as secondary structure and (ii) to determine which sequence alignment algorithms perform well under the broadest range of conditions. We find that sequence alignment alone, using the current algorithms, is generally inappropriate <50–60% sequence identity. Second, we note that the probabilistic method ProAlign and the aging Clustal algorithms generally outperform other sequence-based algorithms, under the broadest range of applications.


PLOS Genetics | 2009

A strand-specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella typhi

Timothy T. Perkins; Robert A. Kingsley; Maria Fookes; Paul P. Gardner; Keith D. James; Lu-Lu Yu; Samuel A. Assefa; Miao-Xia He; Nicholas J. Croucher; Derek Pickard; Duncan J. Maskell; Julian Parkhill; Jyoti S. Choudhary; Nicholas R. Thomson; Gordon Dougan

High-density, strand-specific cDNA sequencing (ssRNA–seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3′- or 5′-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA–seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA–seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.


Nucleic Acids Research | 2006

Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

Jeppe Vinther; Mads M. Hedegaard; Paul P. Gardner; Jens S. Andersen; Peter Arctander

miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection. This repressed set of genes significantly overlaps with miRNA-1 regulated genes that have been identified with DNA array technology and are predicted by computational methods. Moreover, we find that the 3′-untranslated region for the repressed set are enriched in miRNA-1 complementary sites. Our findings demonstrate that SILAC can be used for miRNA target identification and that one highly expressed miRNA can regulate the levels of many different proteins.


Scientific Reports | 2016

An evaluation of the accuracy and speed of metagenome analysis tools

Stinus Lindgreen; Karen L. Adair; Paul P. Gardner

Metagenome studies are becoming increasingly widespread, yielding important insights into microbial communities covering diverse environments from terrestrial and aquatic ecosystems to human skin and gut. With the advent of high-throughput sequencing platforms, the use of large scale shotgun sequencing approaches is now commonplace. However, a thorough independent benchmark comparing state-of-the-art metagenome analysis tools is lacking. Here, we present a benchmark where the most widely used tools are tested on complex, realistic data sets. Our results clearly show that the most widely used tools are not necessarily the most accurate, that the most accurate tool is not necessarily the most time consuming, and that there is a high degree of variability between available tools. These findings are important as the conclusions of any metagenomics study are affected by errors in the predicted community composition and functional capacity. Data sets and results are freely available from http://www.ucbioinformatics.org/metabenchmark.html


BMC Bioinformatics | 2005

A comparison of RNA folding measures

Eva Freyhult; Paul P. Gardner; Vincent Moulton

BackgroundIn the last few decades there has been a great deal of discussion concerning whether or not noncoding RNA sequences (ncRNAs) fold in a more well-defined manner than random sequences. In this paper, we investigate several existing measures for how well an RNA sequence folds, and compare the behaviour of these measures over a large range of Rfam ncRNA families. Such measures can be useful in, for example, identifying novel ncRNAs, and indicating the presence of alternate RNA foldings.ResultsOur analysis shows that ncRNAs, but not mRNAs, in general have lower minimal free energy (MFE) than random sequences with the same dinucleotide frequency. Moreover, even when the MFE is significant, many ncRNAs appear to not have a unique fold, but rather several alternative folds, at least when folded in silico. Furthermore, we find that the six investigated measures are correlated to varying degrees.ConclusionDue to the correlations between the different measures we find that it is sufficient to use only two of them in RNA folding studies, one to test if the sequence in question has lower energy than a random sequence with the same dinucleotide frequency (the Z-score) and the other to see if the sequence has a unique fold (the average base-pair distance, D).

Collaboration


Dive into the Paul P. Gardner's collaboration.

Top Co-Authors

Avatar

Alex Bateman

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah W. Burge

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Vincent Moulton

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Krogh

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge