Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul P. Tamburini is active.

Publication


Featured researches published by Paul P. Tamburini.


Kidney International | 2013

C3 glomerulopathy: consensus report

Matthew C. Pickering; Vivette D. D'Agati; Carla M. Nester; Richard J.H. Smith; Mark Haas; Gerald B. Appel; Charles E. Alpers; Ingeborg M. Bajema; Camille L. Bedrosian; Michael C. Braun; Mittie K. Doyle; Fadi Fakhouri; Fernando C. Fervenza; Agnes B. Fogo; Véronique Frémeaux-Bacchi; Daniel P. Gale; Elena Goicoechea de Jorge; Gene Griffin; Claire L. Harris; V. Michael Holers; Sally Johnson; Peter Lavin; Nicholas Medjeral-Thomas; B. Paul Morgan; Cynthia C. Nast; Laure Hélène Noël; D. Keith Peters; Santiago Rodríguez de Córdoba; Aude Servais; Sanjeev Sethi

C3 glomerulopathy is a recently introduced pathological entity whose original definition was glomerular pathology characterized by C3 accumulation with absent or scanty immunoglobulin deposition. In August 2012, an invited group of experts (comprising the authors of this document) in renal pathology, nephrology, complement biology, and complement therapeutics met to discuss C3 glomerulopathy in the first C3 Glomerulopathy Meeting. The objectives were to reach a consensus on: the definition of C3 glomerulopathy, appropriate complement investigations that should be performed in these patients, and how complement therapeutics should be explored in the condition. This meeting report represents the current consensus view of the group.


The New England Journal of Medicine | 2014

Genetic variants in C5 and poor response to eculizumab.

Junichi Nishimura; Masaki Yamamoto; Shin Hayashi; Kazuma Ohyashiki; Kiyoshi Ando; Andres L. Brodsky; Hideyoshi Noji; Kunio Kitamura; Tetsuya Eto; Toru Takahashi; Masayoshi Masuko; Takuro Matsumoto; Yuji Wano; Tsutomu Shichishima; Hirohiko Shibayama; Masakazu Hase; Lan Li; Krista Johnson; Alberto Lazarowski; Paul P. Tamburini; Johji Inazawa; Taroh Kinoshita; Yuzuru Kanakura

BACKGROUND Eculizumab is a humanized monoclonal antibody that targets complement protein C5 and inhibits terminal complement-mediated hemolysis associated with paroxysmal nocturnal hemoglobinuria (PNH). The molecular basis for the poor response to eculizumab in a small population of Japanese patients is unclear. METHODS We assessed the sequences of the gene encoding C5 in patients with PNH who had either a good or poor response to eculizumab. We also evaluated the functional properties of C5 as it was encoded in these patients. RESULTS Of 345 Japanese patients with PNH who received eculizumab, 11 patients had a poor response. All 11 had a single missense C5 heterozygous mutation, c.2654G → A, which predicts the polymorphism p.Arg885His. The prevalence of this mutation among the patients with PNH (3.2%) was similar to that among healthy Japanese persons (3.5%). This polymorphism was also identified in a Han Chinese population. A patient in Argentina of Asian ancestry who had a poor response had a very similar mutation, c.2653C → T, which predicts p.Arg885Cys. Nonmutant and mutant C5 both caused hemolysis in vitro, but only nonmutant C5 bound to and was blocked by eculizumab. In vitro hemolysis due to nonmutant and mutant C5 was completely blocked with the use of N19-8, a monoclonal antibody that binds to a different site on C5 than does eculizumab. CONCLUSIONS The functional capacity of C5 variants with mutations at Arg885, together with their failure to undergo blockade by eculizumab, account for the poor response to this agent in patients who carry these mutations. (Funded by Alexion Pharmaceuticals and the Ministry of Health, Labor, and Welfare of Japan.).


Radiation Research | 2011

A TPO receptor agonist, ALXN4100TPO, mitigates radiation-induced lethality and stimulates hematopoiesis in CD2F1 mice.

M Satyamitra; Eric D. Lombardini; John Graves; Conor P. Mullaney; Patrick Ney; Jeffrey W. Hunter; Krista Johnson; Paul P. Tamburini; Yi Wang; Jeremy P. Springhorn; Venkataraman Srinivasan

Abstract Thrombopoietin (TPO) receptor agonists lacking sequence homology to TPO were designed by grafting a known peptide sequence into the hinge and/or kappa constant regions of a human anti-anthrax antibody. Some of these proteins were equipotent to TPO in stimulating cMpl-r activity in vitro and in increasing platelet levels in vivo. ALXN4100TPO (4100TPO), the best agonist in this series with a Kd of 30 nM for cMpl-r, exhibited potent activity as a radiation countermeasure in CD2F1 mice exposed to lethal total-body radiation from a cobalt-60 γ-ray source. 4100TPO (2 mg/kg, s.c.) administered once either 24 h before or 6 h after TBI showed superior protection to five daily doses given before or after TBI. Prophylactic administration (69 to 94% survival) was superior to therapeutic schedules (60% survival). 4100TPO conferred a significant survival benefit (P < 0.01) when administered 4 days before or even 12 h after exposure and across a dose range of 0.1 to 8 mg/kg. The dose reduction factors (DRFs) with a single dose of 1 mg/kg 4100TPO 24 h before or 12 h after TBI were 1.32 and 1.11, respectively (P < 0.0001). Furthermore, 4100TPO increased bone marrow cellularity and megakaryocytic development and accelerated multi-lineage hematopoietic recovery in irradiated mice, demonstrating the potential of 4100TPO as both a protector and a mitigator in the event of a radiological incident.


PLOS ONE | 2018

Design and preclinical characterization of ALXN1210: A novel anti-C5 antibody with extended duration of action

Douglas L. Sheridan; Zhao-Xue Yu; Yuchun Zhang; Rekha Patel; Fang Sun; Melissa Lasaro; Keith Bouchard; Bruce Andrien; Andre Marozsan; Yi Wang; Paul P. Tamburini

Eculizumab, a monoclonal antibody (mAb) directed against complement protein C5, is considered to be the current standard of care for patients with paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome. This study describes the generation and preclinical attributes of ALXN1210, a new long-acting anti-C5 mAb, obtained through select modifications to eculizumab to both largely abolish target-mediated drug disposition (TMDD) and increase recycling efficiency via the neonatal Fc receptor (FcRn). To attenuate the effect of TMDD on plasma terminal half-life (t1/2), histidine substitutions were engineered into the complementarity-determining regions of eculizumab to enhance the dissociation rate of the mAb:C5 complex in the acidic early endosome relative to the slightly basic pH of blood. Antibody variants with optimal pH-dependent binding to C5 exhibited little to no TMDD in mice in the presence of human C5. To further enhance the efficiency of FcRn-mediated recycling of the antibody, two additional substitutions were introduced to increase affinity for human FcRn. These substitutions yielded an additional doubling of the t½ of surrogate anti-mouse C5 antibodies with reduced TMDD in transgenic mice expressing the human FcRn. In conclusion, ALXN1210 is a promising new therapeutic candidate currently in clinical development for treatment of patients with PNH and atypical hemolytic uremic syndrome.


Journal of Neuroinflammation | 2016

Complement system activation contributes to the ependymal damage induced by microbial neuraminidase

Pablo Granados-Durán; María Dolores López-Ávalos; Timothy Hughes; Krista Johnson; B. Paul Morgan; Paul P. Tamburini; P. Fernández-Llebrez; J. M. Grondona

BackgroundIn the rat brain, a single intracerebroventricular injection of neuraminidase from Clostridium perfringens induces ependymal detachment and death. This injury occurs before the infiltration of inflammatory blood cells; some reports implicate the complement system as a cause of these injuries. Here, we set out to test the role of complement.MethodsThe assembly of the complement membrane attack complex on the ependymal epithelium of rats injected with neuraminidase was analyzed by immunohistochemistry. Complement activation, triggered by neuraminidase, and the participation of different activation pathways were analyzed by Western blot. In vitro studies used primary cultures of ependymal cells and explants of the septal ventricular wall. In these models, ependymal cells were exposed to neuraminidase in the presence or absence of complement, and their viability was assessed by observing beating of cilia or by trypan blue staining. The role of complement in ependymal damage induced by neuraminidase was analyzed in vivo in two rat models of complement blockade: systemic inhibition of C5 by using a function blocking antibody and testing in C6-deficient rats.ResultsThe complement membrane attack complex immunolocalized on the ependymal surface in rats injected intracerebroventricularly with neuraminidase. C3 activation fragments were found in serum and cerebrospinal fluid of rats treated with neuraminidase, suggesting that neuraminidase itself activates complement. In ventricular wall explants and isolated ependymal cells, treatment with neuraminidase alone induced ependymal cell death; however, the addition of complement caused increased cell death and disorganization of the ependymal epithelium. In rats treated with anti-C5 and in C6-deficient rats, intracerebroventricular injection of neuraminidase provoked reduced ependymal alterations compared to non-treated or control rats. Immunohistochemistry confirmed the absence of membrane attack complex on the ependymal surfaces of neuraminidase-exposed rats treated with anti-C5 or deficient in C6.ConclusionsThese results demonstrate that the complement system contributes to ependymal damage and death caused by neuraminidase. However, neuraminidase alone can induce moderate ependymal damage without the aid of complement.


Archive | 2015

Anti-C5 antibodies having improved pharmacokinetics

Bruce Andrien; Douglas L. Sheridan; Paul P. Tamburini


Archive | 2011

Anti-c5a antibodies and methods for using the antibodies

Russell P. Rother; Douglas L. Sheridan; Paul P. Tamburini; Yuchun Zhang


Archive | 2010

Bispecific antibodies that bind to complement proteins

Paul P. Tamburini


Archive | 2011

Antibodies having reduced immunogenicity in a human

Russell P. Rother; Paul P. Tamburini


American Journal of Biochemistry and Biotechnology | 2013

IGG SUBCLASS VARIATION OF A MONOCLONAL ANTIBODY BINDING TO HUMAN FC-GAMMA RECEPTORS

Rekha Patel; Krista Johnson; Bruce Andrien; Paul P. Tamburini

Collaboration


Dive into the Paul P. Tamburini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuchun Zhang

Alexion Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rekha Patel

Alexion Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Yi Wang

Alexion Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge