Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul R. Gouldson is active.

Publication


Featured researches published by Paul R. Gouldson.


Neuropsychopharmacology | 2000

Dimerization and Domain Swapping in G-Protein-Coupled Receptors: A Computational Study

Paul R. Gouldson; Christopher Higgs; Richard E. Smith; Mark K. Dean; George V. Gkoutos; Christopher A. Reynolds

In recent years there has been an increasing number of reports describing G protein-coupled receptor (GPCR) dimerization and heterodimerization. However, the evidence on the nature of the dimers and their role in GPCR activation is inconclusive. Consequently, we present here a review of our computational studies on G protein-coupled receptor dimerization and domain swapping. The studies described include molecular dynamics simulations on receptor monomers and dimers in the absence of ligand, in the presence of an agonist, and in the presence of an antagonist (or more precisely an inverse agonist). Two distinct sequence-based approaches to studying protein interfaces are also described, namely correlated mutation analysis and evolutionary trace analysis. All three approaches concur in supporting the proposal that the dimerization interface includes transmembrane helices 5 and 6. These studies cannot distinguish between domain swapped dimers and contact dimers as the models used were restricted to the helical part of the receptor. However, it is proposed that for the purpose of signalling, the domain swapped dimer and the corresponding contact dimer are equivalent. The evolutionary trace analysis suggests that every GPCR family and subfamily (for which sufficient sequence data is available) has the potential to dimerize through this common functional site on helices 5 and 6. The evolutionary trace results on the G protein are briefly described and these are consistent with GPCR dimerization. In addition to the functional site on helices 5 and 6, the evolutionary trace analysis identified a second functional site on helices 2 and 3. Possible roles for this site are suggested, including oligomerization.


Proteins | 2004

Toward the active conformations of rhodopsin and the β2‐adrenergic receptor

Paul R. Gouldson; Nathan J. Kidley; Robert P. Bywater; Georgios Psaroudakis; Harry D. Brooks; Constantino Diaz; David Shire; Christopher A. Reynolds

Using sets of experimental distance restraints, which characterize active or inactive receptor conformations, and the X‐ray crystal structure of the inactive form of bovine rhodopsin as a starting point, we have constructed models of both the active and inactive forms of rhodopsin and the β2‐adrenergic G‐protein coupled receptors (GPCRs). The distance restraints were obtained from published data for site‐directed crosslinking, engineered zinc binding, site‐directed spin‐labeling, IR spectroscopy, and cysteine accessibility studies conducted on class A GPCRs. Molecular dynamics simulations in the presence of either “active” or “inactive” restraints were used to generate two distinguishable receptor models. The process for generating the inactive and active models was validated by the hit rates, yields, and enrichment factors determined for the selection of antagonists in the inactive model and for the selection of agonists in the active model from a set of nonadrenergic GPCR drug‐like ligands in a virtual screen using ligand docking software. The simulation results provide new insights into the relationships observed between selected biochemical data, the crystal structure of rhodopsin, and the structural rearrangements that occur during activation. Proteins 2004.


European Journal of Pharmacology | 2000

Mutational analysis and molecular modelling of the antagonist SR 144528 binding site on the human cannabinoid CB2 receptor

Paul R. Gouldson; Bernard Calandra; Pascale Legoux; Aimée Kernéis; Murielle Rinaldi-Carmona; Francis Barth; Gérard Le Fur; Pascual Ferrara; David Shire

We have investigated the binding site of the subtype specific antagonist SR 144528, (N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2. 1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methoxybenzyl)- pyrazo le-3-carboxamide) on the human cannabinoid CB(2) receptor based on functional studies with mutated receptors. Two serine residues in the fourth transmembrane region, Ser(161) and Ser(165), were singly mutated to the cognate cannabinoid CB(1) receptor residue, alanine, and each gave receptors with wild-type properties for the cannabinoid agonists CP 55,940 (1R,3R,4R)-3-[2-hydroxy-4-(1, 1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexan-1-ol) and WIN 55212-2 (R)-(+)[2, 3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1, 4-benzoxazin-6-yl](1-naphthalenyl) methanone, which SR 144528 completely failed to antagonise. Molecular modelling studies show that SR 144528 interacts with residues in transmembrane domains 3, 4, and 5 of the cannabinoid CB(2) receptor through a combination of hydrogen bonds and aromatic and hydrophobic interactions. In addition, the replacement by serine of a nearby cannabinoid CB(2) receptor-specific residue, Cys(175) resulted in wild-type receptor properties with CP 55,940, loss of SR 144528 binding and eight-fold reduced binding and activity of WIN 55212-2, a result compatible with a recently-proposed binding site model for WIN 55212-2.


European Journal of Pharmacology | 2000

Essential role of extracellular charged residues of the human CCK1 receptor for interactions with SR 146131, SR 27897 and CCK-8S

Paul R. Gouldson; Pascale Legoux; Christine Carillon; Xavier Dumont; Gérard Le Fur; Pascual Ferrara; David Shire

We hypothesized that charge-charge interactions may be important for the binding of the human cholecystokinin type 1 (CCK(1)) receptor-specific non-peptide full agonist SR 146131, (2-[4-(4-chloro-2, 5-dimethoxyphenyl)-5-(2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoyl ]-5, 7-dimethyl-indol-1-yl-1-acetic acid), the competitive antagonist SR 27897, (1-[2-(4-(2-chlorophenyl)thiazol-2-yl) aminocarbonyl indoyl] acetic acid) and the natural octapeptide CCK-8S to the CCK(1) receptor. Alanine replacement studies of positively charged residues in the extracellular domains of the receptor showed that only the R336A mutation affected SR 146131 potency of mutated receptors transiently expressed in monkey kidney epithelial COS-7 cells. Two residues, Lys(115) and Lys(187), were implicated in SR 27897 binding. Only the replacement of Lys(115), Arg(197) and Arg(336) significantly affected CCK-8S binding or activity. These results clearly indicated the importance of certain charged residues, but not others, in SR 146131, SR 27897 and CCK-8S binding. Furthermore, although these molecules probably occupy different binding sites on the CCK(1) receptor, we show that a small non-peptide agonist, SR 146131, can stimulate the dual signaling pathways mediated by the CCK(1) receptor.


European Journal of Pharmacology | 2000

The agonist SR 146131 and the antagonist SR 27897 occupy different sites on the human CCK1 receptor

Paul R. Gouldson; Pascale Legoux; Christine Carillon; Bruno Delpech; Gérard Le Fur; Pascual Ferrara; David Shire

1-[2-(4-(2-Chlorophenyl)thiazol-2-yl) aminocarbonyl indoyl] acetic acid (SR 27897) is an effective CCK(1) receptor antagonist, while the structurally related molecule 2-[4-(4-chloro-2, 5-dimethoxyphenyl)-5-(2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoyl ]-5, 7-dimethyl-indol-1-yl-1-acetic acid (SR 146131) is a highly potent and specific agonist for the same receptor. To discover how the two molecules interact with the human cholecystokinin (CCK) CCK(1) receptor, we have carried out binding and activity studies with 33-point mutated receptors. Only six mutants showed altered [3H]SR 27897 binding properties, Lys(115), Lys(187), Phe(198), Trp(209), Leu(214) and Asn(333). In contrast, numerous mutations throughout the receptor either reduced SR 146131 agonist potency, Phe(97), Gly(122), Phe(198), Trp(209), Ile(229), Asn(333), Arg(336) and Leu(356) or increased it, Tyr(48), Cys(94), Asn(98), Leu(217) and Ser(359). Only mutations of Phe(198), Trp(209) and Asn(333) affected both SR 27897 and SR 146131 binding or activity. The collated information was used to construct molecular models of SR 27897 and SR 146131 bound to the human CCK(1) receptor. The clear difference in the binding sites of SR 27897 and SR 146131 offers a molecular explanation for their contrasting pharmacological characteristics.


International Journal of Quantum Chemistry | 1999

Evidence for dimerization in the beta(2)-adrenergic receptor from the evolutionary trace method

George V. Gkoutos; Christopher Higgs; Robert P. Bywater; Paul R. Gouldson; Christopher A. Reynolds

Gkoutos, G. V., Higgs, C., Bywater, R. P., Gouldson, P. R., Reynolds, C. A. (1999). Evidence for dimerization in the beta(2)-adrenergic receptor from the evolutionary trace method. International Journal of Quantum Chemistry, 74 (3), 371-379


European Journal of Pharmacology | 1999

Contrasting roles of Leu356 in the human CCK1 receptor for antagonist SR 27897 and agonist SR 146131 binding

Paul R. Gouldson; Pascale Legoux; Christine Carillon; Bruno Delpech; Gérard Le Fur; Pascual Ferrara; David Shire

A new highly specific, potent non-peptide agonist for the cholecystokinin subtype 1 receptor (CCK(1)), SR 146131 (2-[4-(4-chloro-2, 5-dimethoxyphenyl)-5-(2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoyl ]-5, 7-dimethyl-indol-1-yl-1-acetic acid) was recently described [Bignon, E., Bachy, A., Boigegrain, R., Brodin, R., Cottineau, M., Gully, D., Herbert, J.-M., Keane, P., Labie, C., Molimard, J.-C., Olliero, D., Oury-Donat, F., Petereau, C., Prabonneaud, V., Rockstroh, M.-P., Schaeffer, P., Servant, O.Thurneyssen, O., Soubrié, P., Pascal, M., Maffrand, J.-P., Le Fur, G., 1999. SR 146131: a new, potent, orally active and selective non-peptide cholecystokinin subtype I receptor agonist: I. In vitro studies. J. Pharmacol. Exp. Ther. 289, 742-751]. From binding and activity assays with chimeric constructs of human CCK(1) and the cholecystokinin subtype 2 receptor (CCK(2)) and receptors carrying point mutations, we show that Leu(356), situated in transmembrane domain seven in the CCK(1) receptor, is a putative contact point for SR 146131. In contrast, Leu(356) is probably not in contact with the CCK(1) receptor specific antagonist SR 27897 (1-[2-(4-(2-chlorophenyl)thiazol-2-yl)aminocarbonyl indoyl]acetic acid), a compound structurally related to SR 146131, since its replacement by alanine, histidine or asparagine gave receptors having wild-type CCK(1) receptor SR 27897 binding affinity. Previous mutational analysis of His(381), the cognate position in the rat CCK(2) receptor, had implicated it as being involved in subtype specificity for SR 27897, results which we confirm with corresponding mutations in the human CCK(2) receptor. Moreover, binding and activity assays with the natural CCK receptor agonist, CCK-8S, show that CCK-8S is more susceptible to the mutations in that position in the CCK(1) receptor than in the CCK(2) receptor. The results suggest different binding modes for SR 27897, SR 146131 and CCK-8S in each CCK receptor subtype.


Biochemical Society Transactions | 2012

G-protein-coupled receptor dynamics: dimerization and activation models compared with experiment

Bruck Taddese; Lisa M. Simpson; Ian D. Wall; Frank E. Blaney; Nathan J. Kidley; Henry S.X. Clark; Richard E. Smith; Graham J. G. Upton; Paul R. Gouldson; George Psaroudakis; Robert P. Bywater; Christopher A. Reynolds

Our previously derived models of the active state of the β2-adrenergic receptor are compared with recently published X-ray crystallographic structures of activated GPCRs (G-protein-coupled receptors). These molecular dynamics-based models using experimental data derived from biophysical experiments on activation were used to restrain the receptor to an active state that gave high enrichment for agonists in virtual screening. The β2-adrenergic receptor active model and X-ray structures are in good agreement over both the transmembrane region and the orthosteric binding site, although in some regions the active model is more similar to the active rhodopsin X-ray structures. The general features of the microswitches were well reproduced, but with minor differences, partly because of the unexpected X-ray results for the rotamer toggle switch. In addition, most of the interacting residues between the receptor and the G-protein were identified. This analysis of the modelling has also given important additional insight into GPCR dimerization: re-analysis of results on photoaffinity analogues of rhodopsin provided additional evidence that TM4 (transmembrane helix 4) resides at the dimer interface and that ligands such as bivalent ligands may pass between the mobile helices. A comparison, and discussion, is also carried out between the use of implicit and explicit solvent for active-state modelling.


Protein Engineering | 1998

Domain swapping in G-protein coupled receptor dimers.

Paul R. Gouldson; Christopher R. Snell; Robert P. Bywater; Christopher Higgs; Christopher A. Reynolds


Journal of Medicinal Chemistry | 1997

A New Approach to Docking in the β2-Adrenergic Receptor That Exploits the Domain Structure of G-Protein-Coupled Receptors

Paul R. Gouldson; Christopher R. Snell; Christopher A. Reynolds

Collaboration


Dive into the Paul R. Gouldson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Shire

Institut de Chimie des Substances Naturelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascual Ferrara

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge