Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul R. Holland is active.

Publication


Featured researches published by Paul R. Holland.


Journal of Climate | 2008

The Response of Ice Shelf Basal Melting to Variations in Ocean Temperature

Paul R. Holland; Adrian Jenkins; David M. Holland

Abstract A three-dimensional ocean general circulation model is used to study the response of idealized ice shelves to a series of ocean-warming scenarios. The model predicts that the total ice shelf basal melt increases quadratically as the ocean offshore of the ice front warms. This occurs because the melt rate is proportional to the product of ocean flow speed and temperature in the mixed layer directly beneath the ice shelf, both of which are found to increase linearly with ocean warming. The behavior of this complex primitive equation model can be described surprisingly well with recourse to an idealized reduced system of equations, and it is shown that this system supports a melt rate response to warming that is generally quadratic in nature. This study confirms and unifies several previous examinations of the relation between melt rate and ocean temperature but disagrees with other results, particularly the claim that a single melt rate sensitivity to warming is universally valid. The hypothesized ...


Journal of Geophysical Research | 2007

Numerical modeling of ocean‐ice interactions under Pine Island Bay's ice shelf

Antony J. Payne; Paul R. Holland; Andrew Shepherd; Ian C. Rutt; Adrian Jenkins; Ian Joughin

[1]xa0A two-dimensional numerical model is used to simulate the dynamics of buoyant, meltwater-rich plumes flowing beneath the ice shelf occupying much of Pine Island Bay, West Antarctica. Recent studies have shown that this ice shelf, along with all others fringing the Amundsen Sea, is thinning rapidly. In the model, both the Coriolis effect and subshelf topography are important in controlling plume dynamics and the spatial distribution of ice melt. Melt is concentrated in a narrow zone within ∼20 km of the grounding line where steep subshelf slopes and access to warm ambient water allow melt rates to exceed 100 m yr−1. The plume generated by entrainment of ambient water into the meltwater in these areas is guided by the topography of the ice shelf underside and exits the ice shelf at three distinct outflow locations. Melt rates generated along the course of the plume are higher (approximately 2.5×) than rates elsewhere. The model suggests that the observed ice shelf thinning rates could have resulted from a hypothetical instantaneous 0.25°C warming of the ambient water entrained by the plume. A context for this value is provided by the 40-year warming trend documented by Jacobs et al. (2002) for Circumpolar Deep Water in the nearby Ross Sea.


Journal of Climate | 2014

Modeled Trends in Antarctic Sea Ice Thickness

Paul R. Holland; Nicolas Bruneau; Clare Enright; Martin Losch; Nathan T. Kurtz; R. Kwok

AbstractUnlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice concentration over recent decades. However, observations of decadal trends in Antarctic ice thickness, and hence ice volume, do not currently exist. In this study a model of the Southern Ocean and its sea ice, forced by atmospheric reanalyses, is used to assess 1992–2010 trends in ice thickness and volume. The model successfully reproduces observations of mean ice concentration, thickness, and drift, and decadal trends in ice concentration and drift, imparting some confidence in the hindcasted trends in ice thickness. The model suggests that overall Antarctic sea ice volume has increased by approximately 30 km3 yr−1 (0.4% yr−1) as an equal result of areal expansion (20 × 103 km2 yr−1 or 0.2% yr−1) and thickening (1.5 mm yr−1 or 0.2% yr−1). This ice volume increase is an order of magnitude smaller than the Arctic decrease, and about half the size of the increased freshwater s...


Journal of Physical Oceanography | 2014

The Effect of Meltwater Plumes on the Melting of a Vertical Glacier Face

Satoshi Kimura; Paul R. Holland; Adrian Jenkins; Matthew D. Piggott

AbstractFreshwater produced by the surface melting of ice sheets is commonly discharged into ocean fjords from the bottom of deep fjord-terminating glaciers. The discharge of the freshwater forms upwelling plumes in front of the glacier calving face. This study simulates the meltwater plumes emanated into an unstratified environment using a nonhydrostatic ocean model with an unstructured mesh and subgrid-scale mixing calibrated by comparison to established plume theory. The presence of an ice face reduces the entrainment of seawater into the meltwater plumes, so the plumes remain attached to the ice front, in contrast to previous simple models. Ice melting increases with height above the discharge, also in contrast to some simple models, and the authors speculate that this “overcutting” may contribute to the tendency of icebergs to topple inwards toward the ice face upon calving. The overall melt rate is found to increase with discharge flux only up to a critical value, which depends on the channel size. ...


Journal of Fluid Mechanics | 2005

Frazil dynamics and precipitation in a water column with depth-dependent supercooling

Paul R. Holland; Daniel L. Feltham

When seawater becomes supercooled, collections of small ice crystals, known as frazil ice, form and grow. A model of frazil ice dynamics is presented that deals explicitly with the buoyant settling of frazil crystals onto an overlying surface. This yields further insight into transport associated with the ice pump mechanism, whereby ice is melted at depth and transferred to a shallower location as a result of the pressure variation of seawater’s freezing temperature. The model is applied to a vertical cross-section through an Ice Shelf Water plume beneath Filchner–Ronne Ice Shelf, Antarctica, and helps to elucidate the depth-variation in its properties for the first time, as well as predicting the precipitation rate of frazil crystals. The model predicts that frazil ice should be preferentially located in a narrow layer near the ice shelf base as a result of the maximum supercooling there and an influx of crystals rising under their own buoyancy. The deposition of these crystals onto the ice shelf is governed by the balance between crystal rising and turbulent transfer of frazil away from the shelf, which is investigated in some detail.


Limnologica | 2003

A review of the physics and ecological implications of the thermal bar circulation

Paul R. Holland; Anthony Kay

Following recent applications of numerical modelling and remote sensing to the thermal bar phenomenon, this paper seeks to review the current state of knowledge on the effect of its circulation on lacustrine plankton ecosystems. After summarising the literature on thermal bar hydrodynamics, a thorough review is made of all plankton observations taken in the presence of a thermal bar. Two distinct plankton growth regimes are found, one with production favoured throughout the inshore region and another with a maximum in plankton biomass near the position of the thermal bar. Possible explanations for the observed distributions are then discussed, with reference to numerical modelling studies, and the scope for future study of this interdisciplinary topic is outlined.


Journal of Climate | 2013

Decadal Freshening of the Antarctic Bottom Water Exported from the Weddell Sea

L. Jullion; Alberto C. Naveira Garabato; Michael P. Meredith; Paul R. Holland; Peggy Courtois; Brian A. King

Recent decadal changes in Southern Hemisphere climate have driven strong responses from the cryosphere. Concurrently, there has been a marked freshening of the shelf and bottom waters across a wide sector of the Southern Ocean, hypothesised to be caused by accelerated glacial melt in response to a greater flux of warm waters from the Antarctic Circumpolar Current onto the shelves of West Antarctica. However, the circumpolar pattern of changes has been incomplete: no decadal freshening in the deep layers of the Atlantic sector had been observed. In this study, we document a significant freshening of the Antarctic Bottom Water exported from the Weddell Sea, which is the source for the abyssal layer of the Atlantic overturning circulation, and we trace its possible origin to atmospheric-forced changes in the ice shelves and sea ice on the eastern flank of the Antarctic Peninsula that include an anthropogenic component. These findings suggest that the expansive and relatively cool Weddell gyre does not insulate the bottom water formation regions in the Atlantic sector from the ongoing changes in climatic forcing over the Antarctic region.


Journal of Physical Oceanography | 2013

Impact of atmospheric forcing on Antarctic continental shelf water masses

Alek A. Petty; Daniel L. Feltham; Paul R. Holland

The Antarctic continental shelf seas feature a bimodal distribution of water mass temperature, with the Amundsen and Bellingshausen Seas flooded by Circumpolar Deep Water that is several degrees Celsius warmer than the cold shelf waters prevalent in the Weddell and Ross Seas. This bimodal distribution could be caused by differences in atmospheric forcing, ocean dynamics, ocean and ice feedbacks, or some combination of these factors. In this study, a highly simplified coupled sea ice–mixed layer model is developed to investigate the physical processes controlling this situation. Under regional atmospheric forcings and parameter choices the 10-yr simulations demonstrate a complete destratification of the Weddell Sea water column in winter, forming cold, relatively saline shelf waters, while the Amundsen Sea winter mixed layer remains shallower, allowing a layer of deep warm water to persist. Applying the Weddell atmospheric forcing to the Amundsen Sea model destratifies the water column after two years, and applying the Amundsen forcing to the Weddell Sea model results in a shallower steady-state winter mixed layer that no longer destratifies the water column. This suggests that the regional difference in atmospheric forcings alone is sufficient to account for the bimodal distribution in Antarctic shelf-sea temperatures. The model prediction of mixed layer depth is most sensitive to the air temperature forcing, but a switch in all forcings is required to prevent destratification of the Weddell Sea water column.


Journal of Physical Oceanography | 2013

Eddy-Driven Exchange between the Open Ocean and a Sub–Ice Shelf Cavity

Marius Årthun; Paul R. Holland; Keith W. Nicholls; Daniel L. Feltham

The exchange between the open ocean and sub-ice shelf cavities is important to both water mass transformations and ice shelf melting. Here we use a high-resolution (500 m) numerical model to investigate to which degree eddies produced by frontal instability at the edge of a polynya are capable of transporting dense High Salinity Shelf Water (HSSW) underneath an ice shelf. The applied surface buoyancy flux and ice shelf geometry is based on Ronne Ice Shelf in the southern Weddell Sea, an area of intense wintertime sea ice production where a flow of HSSW into the cavity has been observed. Results show that eddies are able to enter the cavity at the southwestern corner of the polynya where an anticyclonic rim current intersects the ice shelf front. The size and time scale of simulated eddies are in agreement with observations close to the Ronne Ice Front. The properties and strength of the inflow are sensitive to the prescribed total ice production, flushing the ice shelf cavity at a rate of 0.2–0.4 × 106 m3 s−1 depending on polynya size and magnitude of surface buoyancy flux. Eddy-driven HSSW transport into the cavity is reduced by about 50% if the model grid resolution is decreased to 2-5 km and eddies are not properly resolved.


Environmental Fluid Mechanics | 2001

A Numerical Study of the Dynamics of the Riverine Thermal Bar in a Deep Lake

Paul R. Holland; Anthony Kay; Vincenzo Botte

A numerical model based on a Finite Volume formulation of the Navier–Stokes equations is used to simulate a range of scenarios leading to a thermal bar formed by a river inflow to an idealised deep lake. The results presented here show that small riverine salinity increases have a profound effect on the dynamics of the thermal bar, suppressing horizontal propagation of the plume and raising the possibility of a thermal bar which is capable of sinking to great depths. This finding is particularly relevant to Lake Baikal in Siberia, where the vigorous deep-water renewal is still not fully understood. An analysis of the buoyancy forces governing the depth of penetration of the thermal bar plume shows that realistic salinity gradients are an important factor in determining the circulation of Baikal waters. Observations of the saline curtailment of the thermal bars horizontal propagation also reveal a potential for reduced productivity in the ecosystem of any temperate river delta during the Spring renewal period.

Collaboration


Dive into the Paul R. Holland's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian Jenkins

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Kay

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

Satoshi Kimura

British Antarctic Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex M. Brisbourne

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge