Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul R. Murdock is active.

Publication


Featured researches published by Paul R. Murdock.


Biochemical and Biophysical Research Communications | 2003

Resistin is expressed in human macrophages and directly regulated by PPARγ activators

Lisa Patel; Amy C Buckels; Ian Kinghorn; Paul R. Murdock; Joanna D. Holbrook; Christopher Plumpton; Colin H. Macphee; Stephen A. Smith

Resistin is a cysteine-rich protein postulated to be a molecular link between obesity and type 2 diabetes. The aim of this study was to investigate the role of PPAR gamma in the regulation of resistin expression in human primary macrophages. Fluorescent real-time PCR (Taqman) analysis of resistin expression across a range of human tissues showed that resistin is highly expressed in bone marrow compared to other tissues. Taqman analysis and Western blotting showed that rosiglitazone decreased resistin expression at both the mRNA and protein levels in human primary monocyte-derived macrophages in vitro. Resistin expression was reduced by up to 80% after exposure to 100 nM rosiglitazone for 96 h. Bioinformatics analysis of the genomic sequence upstream of the resistin coding sequence identified several putative PPAR response elements of which one was shown to bind PPAR gamma using electrophoretic mobility shift assays. Our data support a direct role for PPAR gamma in the regulation of resistin expression.


Pain | 2000

Cloning and functional expression of a human orthologue of rat vanilloid receptor-1

Philip David Hayes; Helen Jane Meadows; Martin J. Gunthorpe; Mark Harries; D.Malcolm Duckworth; William Cairns; David C. Harrison; Catherine E. Clarke; Kathryn Ellington; Rab K. Prinjha; Amanda Barton; Andrew D. Medhurst; Graham D. Smith; Simon Topp; Paul R. Murdock; Gareth J. Sanger; John Terrett; Owen Jenkins; Christopher D. Benham; Andrew D. Randall; Isro S Gloger; John B. Davis

&NA; Capsaicin, resiniferatoxin, protons or heat have been shown to activate an ion channel, termed the rat vanilloid receptor‐1 (rVR1), originally isolated by expression cloning for a capsaicin sensitive phenotype. Here we describe the cloning of a human vanilloid receptor‐1 (hVR1) cDNA containing a 2517 bp open reading frame that encodes a protein with 92% homology to the rat vanilloid receptor‐1. Oocytes or mammalian cells expressing this cDNA respond to capsaicin, pH and temperature by generating inward membrane currents. Mammalian cells transfected with human VR1 respond to capsaicin with an increase in intracellular calcium. The human VR1 has a chromosomal location of 17p13 and is expressed in human dorsal root ganglia and also at low levels throughout a wide range of CNS and peripheral tissues. Together the sequence homology, similar expression profile and functional properties confirm that the cloned cDNA represents the human orthologue of rat VR1.


Journal of Neurochemistry | 2003

Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin

Andrew D. Medhurst; Carol A. Jennings; Melanie J. Robbins; Robert P. Davis; Catherine E. Ellis; Kim Winborn; Kenneth W. M. Lawrie; Guillaume Hervieu; Graham J. Riley; Jane E. Bolaky; Nicole C. Herrity; Paul R. Murdock; John G. Darker

Apelin peptides have recently been identified to be the endogenous ligands for the G protein‐coupled receptor APJ. However, little is known about the physiological roles of this ligand‐receptor pairing. In the present study we investigated the pharmacology of several apelin analogues at the human recombinant APJ receptor using radioligand binding and functional assays. This has led to the identification of key residues in the apelin peptide required for functional potency and binding affinity through structure–activity studies. In particular, we have identified that replacement of leucine in position 5, or arginine in position 2 and 4 of the C‐terminal apelin peptide, apelin‐13, resulted in significant changes in pharmacology. We also investigated the detailed localization of pre‐proapelin and APJ receptor mRNA in a wide range of human, rat and mouse tissues using quantitative RT–PCR, and carried out a detailed immunohistochemical study of the distribution of the APJ receptor in rat brain and spinal cord. Interestingly, the APJ receptor was not only co‐localized in white matter with GFAP in the spinal cord, but was also clearly localized on neurones in the brain, suggesting that this receptor and its peptide may be involved in a wide range of biological process yet to be determined.


Journal of Biological Chemistry | 2001

Molecular Cloning and Functional Characterization of MCH2, a Novel Human MCH Receptor

Jeffrey Hill; Malcolm Duckworth; Paul R. Murdock; Gillian Rennie; Cibele Sabido-David; Robert S. Ames; Philip G. Szekeres; Shelagh Wilson; Derk J. Bergsma; Israel S. Gloger; Dana S. Levy; Jon K. Chambers; Alison Muir

Melanin-concentrating hormone (MCH) is involved in the regulation of feeding and energy homeostasis. Recently, a 353-amino acid splice variant form of the human orphan receptor SLC-1 (1) (hereafter referred to as MCH1) was identified as an MCH receptor. This report describes the cloning and functional characterization of a novel second human MCH receptor, which we designate MCH2, initially identified in a genomic survey sequence as being homologous to MCH1 receptors. Using this sequence, a full-length cDNA was generated with an open reading frame of 1023 base pairs, encoding a polypeptide of 340 amino acids, with 38% identity to MCH1 and with many of the structural features conserved in G protein-coupled receptors. This newly discovered receptor belongs to class 1 (rhodopsin-like) of the G protein-coupled receptor superfamily. HEK293 cells transfected with MCH2 receptors responded to nanomolar concentrations of MCH with an increase in intracellular Ca2+ levels and increased cellular extrusion of protons. In addition, fluorescently labeled MCH bound with nanomolar affinity to these cells. The tissue localization of MCH2 receptor mRNA, as determined by quantitative reverse transcription-polymerase chain reaction, was similar to that of MCH1 in that both receptors are expressed predominantly in the brain. The discovery of a novel MCH receptor represents a new potential drug target and will allow the further elucidation of MCH-mediated responses.


European Journal of Neuroscience | 2003

Neurokinin 1 receptor and relative abundance of the short and long isoforms in the human brain

Laura Caberlotto; Yasmin L. Hurd; Paul R. Murdock; Jean Philippe Wahlin; Sergio Melotto; Mauro Corsi; Renzo Carletti

Substance P exerts its various biochemical effects mainly via interactions through neurokinin‐1 receptors (NK1). Recently, the NK1 receptor has attracted considerable interest for its possible role in a variety of psychiatric disorders including depression and anxiety. However, little is known regarding the anatomical distribution of NK1 in the human central nervous system (CNS). Riboprobe in situ hybridization, quantitative PCR and in vitro autoradiography were performed. Highest NK1 mRNA levels were localized in the locus coeruleus and ventral striatum, while moderate hybridization signals were observed in the cerebral cortex (most abundant in the visual cortex), hippocampus and different amygdaloid nuclei. Very low levels of the NK1 mRNA were detected in the cerebellum and thalamus. In view of the existence of a long and short isoform of the NK1 receptor, it was of interest to assess whether there was a differential distribution of the two splice variants in the human CNS and peripheral tissues. A quantitative TaqMan PCR analysis showed that the long NK1 isoform was the most prevalent throughout the human brain, while in peripheral tissues the truncated form was the most represented. 3H‐Substance P autoradiography revealed a good correlation between receptor binding sites and NK1 mRNA expression throughout the brain, with the highest levels of binding in the locus coeruleus. These results provide the anatomical evidence that the NK1 receptors have a strong association with neuronal systems relevant to mood regulation and stress in the human brain, but do not suggest a region‐specific role of the two isoforms in the CNS.


Journal of Receptors and Signal Transduction | 2006

Tissue Distribution Profiles of the Human TRPM Cation Channel Family

Elena Fonfria; Paul R. Murdock; Fiona S. Cusdin; Christopher D. Benham; Rosemary E. Kelsell; Shaun McNulty

Eight members of the TRP-melastatin (TRPM) subfamily have been identified, whose physiological functions and distribution are poorly characterized. Although tissue expression and distribution patterns have been reported for individual TRPM channels, comparisons between individual studies are not possible because of variations in analysis techniques and tissue selection. We report here a comparative analysis of the expression patterns of all of the human TRPM channels in selected peripheral tissues and the central nervous system (CNS) using two distinct but complimentary approaches: TaqMan and SYBR Green real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). These techniques generated comparative distribution profiles and demonstrated tissue-specific co-expression of TRPM mRNA species, indicating significant potential for the formation of heteromeric channels. TRPM channels 2, 4, 5, 6, and 7 in contrast to 1, 3, and 8 are widely distributed in the CNS and periphery. The tissues demonstrating highest expression for individual family members were brain (TRPM1), brain and bone marrow (TRPM2), brain and pituitary (TRPM3), intestine and prostate (TRPM4), intestine, pancreas, and prostate (TRPM5), intestine and brain (TRPM6), heart, pituitary, bone, and adipose tissue (TRPM7), and prostate and liver (TRPM8). The data reported here will guide the elucidation of TRPM channel physiological functions.


British Journal of Pharmacology | 1998

Orphan G-protein-coupled receptors : the next generation of drug targets?

Shelagh Wilson; Derk J. Bergsma; Jon Chambers; Alison Muir; Kenneth G. M. Fantom; Catherine E. Ellis; Paul R. Murdock; Nicole C. Herrity; Jeffrey M. Stadel

The pharmaceutical industry has readily embraced genomics to provide it with new targets for drug discovery. Large scale DNA sequencing has allowed the identification of a plethora of DNA sequences distantly related to known G protein‐coupled receptors (GPCRs), a superfamily of receptors that have a proven history of being excellent therapeutic targets. In most cases the extent of sequence homology is insufficient to assign these ‘orphan’ receptors to a particular receptor subfamily. Consequently, reverse molecular pharmacological and functional genomic strategies are being employed to identify the activating ligands of the cloned receptors. Briefly, the reverse molecular pharmacological methodology includes cloning and expression of orphan GPCRs in mammalian cells and screening these cells for a functional response to cognate or surrogate agonists present in biological extract preparations, peptide libraries, and complex compound collections. The functional genomics approach involves the use of humanized yeast cells, where the yeast GPCR transduction system is engineered to permit functional expression and coupling of human GPCRs to the endogenous signalling machinery. Both systems provide an excellent platform for identifying novel receptor ligands. Once activating ligands are identified they can be used as pharmacological tools to explore receptor function and relationship to disease.


Journal of Biological Chemistry | 2000

Neuromedin U Is a Potent Agonist at the Orphan G Protein-coupled Receptor FM3

Philip G. Szekeres; Alison Muir; Lisa D. Spinage; Jane E. Miller; Sharon Butler; Angela M. Smith; Gillian Rennie; Paul R. Murdock; Laura R. Fitzgerald; Hsiao-Ling Wu; Lynette J. McMillan; Stephanie Guerrera; Lisa Vawter; Nabil Elshourbagy; Jeffrey L. Mooney; Derk J. Bergsma; Shelagh Wilson; Jon Chambers

Neuromedins are a family of peptides best known for their contractile activity on smooth muscle preparations. The biological mechanism of action of neuromedin U remains unknown, despite the fact that the peptide was first isolated in 1985. Here we show that neuromedin U potently activates the orphan G protein-coupled receptor FM3, with subnanomolar potency, when FM3 is transiently expressed in human HEK-293 cells. Neuromedins B, C, K, and N are all inactive at this receptor. Quantitative reverse transcriptase-polymerase chain reaction analysis of neuromedin U expression in a range of human tissues showed that the peptide is highly expressed in the intestine, pituitary, and bone marrow, with lower levels of expression seen in stomach, adipose tissue, lymphocytes, spleen, and the cortex. Similar analysis of FM3 expression showed that the receptor is widely expressed in human tissue with highest levels seen in adipose tissue, intestine, spleen, and lymphocytes, suggesting that neuromedin U may have a wide range of presently undetermined physiological effects. The discovery that neuromedin U is an endogenous agonist for FM3 will significantly aid the study of the full physiological role of this peptide.


Biochimica et Biophysica Acta | 2001

Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription–polymerase chain reaction study

Darren Moore; Jon K. Chambers; Jean-Philippe Wahlin; Kong B Tan; Gary B.T. Moore; Owen Jenkins; Piers C. Emson; Paul R. Murdock

The diverse biological actions of extracellular nucleotides in tissues and cells are mediated by two distinct classes of P2 receptor, P2X and P2Y. The G protein-coupled P2Y receptors comprise at least six mammalian subtypes (P2Y(1,2,4,6,11,12)), all of which have been cloned from human tissues, as well as other species. The P2Y receptor subtypes differ in their pharmacological selectivity for various adenosine and uridine nucleotides, which overlap in some cases. Data concerning the mRNA expression patterns of five P2Y receptors (P2Y(1,2,4,6,11)) in different human tissues and cells are currently quite limited, while P2Y mRNA distribution in the human brain has not previously been studied. In this study, we have addressed this deficiency in receptor expression data by using a quantitative reverse transcription-polymerase chain reaction approach to measure the precise mRNA expression pattern of each P2Y receptor subtype in a number of human peripheral tissues and brain regions, from multiple individuals, as well as numerous human cell lines and primary cells. All five P2Y receptors exhibited widespread yet subtype-selective mRNA expression profiles throughout the human tissues, brain regions and cells used. Our extensive expression data indicate the many potentially important roles of P2Y receptors throughout the human body, and will help in elucidating the physiological function of each receptor subtype in a wide variety of human systems.


Biochemical Journal | 2001

Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases

Ian R. Jowsey; Anne M. Thomson; Jack U. Flanagan; Paul R. Murdock; Gary B.T. Moore; David J. Meyer; Gregory J. Murphy; Stephen A. Smith; John D. Hayes

GSH-dependent prostaglandin D(2) synthase (PGDS) enzymes represent the only vertebrate members of class Sigma glutathione S-transferases (GSTs) identified to date. Complementary DNA clones encoding the orthologous human and rat GSH-dependent PGDS (hPGDS and rPGDS, respectively) have been expressed in Escherichia coli, and the recombinant proteins isolated by affinity chromatography. The purified enzymes were both shown to catalyse specifically the isomerization of prostaglandin (PG) H(2) to PGD(2). Each transferase also exhibited GSH-conjugating and GSH-peroxidase activities. The ability of hPGDS to catalyse the conjugation of aryl halides and isothiocyanates with GSH was found to be less than that of the rat enzyme. Whilst there is no difference between the enzymes with respect to their K(m) values for 1-chloro-2,4-dinitrobenzene, marked differences were found to exist with respect to their K(m) for GSH (8 mM versus 0.3 mM for hPGDS and rPGDS, respectively). Using molecular modelling techniques, amino acid substitutions have been identified in the N-terminal domain of these enzymes that lie outside the proposed GSH-binding site, which may explain these catalytic differences. The tissue-specific expression of PGDS also varies significantly between human and rat; amongst the tissues examined, variation in expression between the two species was most apparent in spleen and bone marrow. Differences in catalytic properties and tissue-specific expression of hPGDS and rPGDS appears to reflect distinct physiological roles for class Sigma GST between species. The evolution of divergent functions for the hPGDS and rPGDS is discussed in the context of the orthologous enzyme from chicken.

Collaboration


Dive into the Paul R. Murdock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge