Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul R. S. Baker is active.

Publication


Featured researches published by Paul R. S. Baker.


Analytical Chemistry | 2014

Differential mobility spectrometry-driven shotgun lipidomics.

Tuulia Lintonen; Paul R. S. Baker; Matti Suoniemi; Baljit K. Ubhi; Kaisa M. Koistinen; Eva Duchoslav; J. Larry Campbell; Kim Ekroos

The analysis of lipids by mass spectrometry (MS) can provide in-depth characterization for many forms of biological samples. However, such workflows can also be hampered by challenges like low chromatographic resolution for lipid separations and the convolution of mass spectra from isomeric and isobaric species. To address these issues, we describe the use of differential mobility spectrometry (DMS) as a rapid and predictable separation technique within a shotgun lipidomics workflow, with a special focus on phospholipids (PLs). These analytes, ionized by electrospray ionization (ESI), are filtered using DMS prior to MS analysis. The observed separation (measured in terms of DMS compensation voltage) is affected by several factors, including the m/z of the lipid ion, the structure of an individual ion, and the presence of chemical modifiers in the DMS cell. Such DMS separations can simplify the analysis of complex extracts in a robust and reproducible manner, independent of utilized MS instrumentation. The predictable separation achieved with DMS can facilitate correct lipid assignments among many isobaric and isomeric species independent of the resolution settings of the MS analysis. This leads to highly comprehensive and quantitative lipidomic outputs through rapid profiling analyses, such as Q1 and MRM scans. The ultimate benefit of the DMS separation in this unique shotgun lipidomics workflow is its ability to separate many isobaric and isomeric lipids that by standard shotgun lipidomics workflows are difficult to assess precisely, for example, ether and diacyl species and phosphatidylcholine (PC) and sphingomyelin (SM) lipids.


Journal of Lipid Research | 2014

Three-dimensional enhanced lipidomics analysis combining UPLC, differential ion mobility spectrometry, and mass spectrometric separation strategies

Paul R. S. Baker; Aaron M. Armando; J. Larry Campbell; Oswald Quehenberger; Edward A. Dennis

Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level.


Biochimica et Biophysica Acta | 2002

Regulation of platelet-activating factor synthesis in human neutrophils by MAP kinases.

Paul R. S. Baker; John Owen; Andrew B. Nixon; Leslie Thomas; Rhonda E. Wooten; Larry W. Daniel; Joseph T. O'Flaherty; Robert L. Wykle

Human neutrophils (PMN) are potentially a major source of platelet-activating factor (PAF) produced during inflammatory responses. The stimulated synthesis of PAF in PMN is carried out by a phospholipid remodeling pathway involving three enzymes: acetyl-CoA:lyso-PAF acetyltransferase (acetyltransferase), type IV phospholipase A(2) (cPLA(2)) and CoA-independent transacylase (CoA-IT). However, the coordinated actions and the regulatory mechanisms of these enzymes in PAF synthesis are poorly defined. A23187 has been widely used to activate the remodeling pathway, but it has not been shown how closely its actions mimic those of physiological stimuli. Here we address this important problem and compare responses of the three remodeling enzymes and PAF synthesis by intact cells. In both A23187- and N-formyl-methionyl-leucyl-phenylalanine (fMLP)-stimulated PMN, acetyltransferase activation is blocked by SB 203580, a p38 MAP kinase inhibitor, but not by PD 98059, which blocks activation of the ERKs. In contrast, either agent attenuated cPLA(2) activation. Correlating with these results, SB 203580 decreased stimulated PAF formation by 60%, whereas PD 98059 had little effect. However, the combination of both inhibitors decreased PAF formation to control levels. Although a role for CoA-IT in PAF synthesis is recognized, we did not detect activation of the enzyme in stimulated PMN. CoA-IT thus appears to exhibit full activity in resting as well as stimulated cells. We conclude that the calcium ionophore A23187 and the receptor agonist fMLP both act through common pathways to stimulate PAF synthesis, with p38 MAP kinase regulating acetyltransferase and supplementing ERK activation of cPLA(2).


Analytical Chemistry | 2017

Distinguishing Cis and Trans Isomers in Intact Complex Lipids Using Electron Impact Excitation of Ions from Organics Mass Spectrometry

Takashi Baba; J. Larry Campbell; J. C. Yves Le Blanc; Paul R. S. Baker

We present a mass spectrometry-based method for the identification of cis and trans double-bond isomers within intact complex lipid mixtures using electron impact excitation of ions from organics (EIEIO) mass spectrometry. EIEIO involves irradiating singly charged lipid ions with electrons having kinetic energies of 5-16 eV. The resulting EIEIO spectra can be used to discern cis and trans double-bond isomers by virtue of the differences in the fragmentation patterns at the carbon-carbon single bonds neighboring the double bonds. For trans double bonds, these characteristic fragments include unique closed-shell and open-shell (radical) products. To explain this fragmentation pattern in trans double bonds, we have proposed a reaction mechanism involving excitation of the double bonds π electrons followed by hydrogen atom rearrangement. Several lipid standards were analyzed using the EIEIO method, including mixtures of these standards. Prior to EIEIO, some of the lipid species in these mixtures were separated from their isomeric forms by using differential mobility spectrometry (DMS). For example, mixed cis and trans forms of triacylglycerols and phosphatidylcholines were identified by this DMS-EIEIO workflow. With this combined gas-phase separation and subsequent fragmentation, we could eliminate the need for authentic standards for identification. When DMS could not separate cis and trans isomers completely, as was the case with sphingomyelins, we relied upon the aforementioned diagnostic EIEIO fragment peaks to determine the relative contribution of the trans double-bond isomer in the mixed samples. We also applied the DMS-EIEIO methodology to natural samples extracted from a ruminant (bovine), which serve as common origins of trans fatty acids in a typical Western diet that includes dairy products.


Journal of Lipid Research | 2016

Structural identification of triacylglycerol isomers using electron impact excitation of ions from organics (EIEIO)

Takashi Baba; J. Larry Campbell; J. C. Yves Le Blanc; Paul R. S. Baker

Electron-induced dissociation or electron impact excitation of ions from organics (EIEIO) was applied to triacylglycerols (TAGs) for in-depth molecular structure analysis using MS. In EIEIO, energetic electrons (∼10 eV) fragmented TAG ions to allow for regioisomeric assignment of identified acyl groups at the sn-2 or sn-1/3 positions of the glycerol backbone. In addition, carbon-carbon double bond locations within the acyl chains could also be assigned by EIEIO. Beyond the analysis of lipid standards, this technique was applied to edible oils and natural lipid extracts to demonstrate the power of this method to provide in-depth structural elucidation of TAG molecular species.


Mass spectrometry | 2017

Development of a Branched Radio-Frequency Ion Trap for Electron Based Dissociation and Related Applications

Takashi Baba; J. Larry Campbell; J. C. Yves Le Blanc; Paul R. S. Baker; James W. Hager; Bruce A. Thomson

Collision-induced dissociation (CID) is the most common tool for molecular analysis in mass spectrometry to date. However, there are difficulties associated with many applications because CID does not provide sufficient information to permit details of the molecular structures to be elucidated, including post-translational-modifications in proteomics, as well as isomer differentiation in metabolomics and lipidomics. To face these challenges, we are developing fast electron-based dissociation devices using a novel radio-frequency ion trap (i.e., a branched ion trap). These devices have the ability to perform electron capture dissociation (ECD) on multiply protonated peptide/proteins; in addition, the electron impact excitation of ions from organics (EIEIO) can be also performed on singly charged molecules using such a device. In this article, we review the development of this technology, in particular on how reaction speed for EIEIO analyses on singly charged ions can be improved. We also overview some unique, recently reported applications in both lipidomics and glycoproteomics.


Journal of Lipid Research | 2018

Quantitative structural multiclass lipidomics using differential mobility: electron impact excitation of ions from organics (EIEIO) mass spectrometry

Takashi Baba; J. Larry Campbell; J. C. Yves Le Blanc; Paul R. S. Baker; Kazutaka Ikeda

We report a method for comprehensive structural characterization of lipids in animal tissues using a combination of differential ion mobility spectrometry (DMS) with electron-impact excitation of ions from organics (EIEIO) mass spectrometry. Singly charged lipid ions in protonated or sodiated forms were dissociated by an electron beam having a kinetic energy of 10 eV in a branched radio-frequency ion trap. We established a comprehensive set of diagnostics to characterize the structures of glycerophospholipids, sphingolipids, and acylglycerols, including glycosylated, plasmalogen, and ester forms. This EIEIO mass spectrometer was combined with DMS as a separation tool to analyze complex lipid extracts. Deuterated quantitative standards, which were added during extraction, allowed for the quantitative analysis of the lipid molecular species in various lipid classes. We applied this technique to the total lipids extracted from porcine brain, and we structurally characterized over 300 lipids (with the exception of cis/trans double-bond isomerism in the acyl chains). The structural dataset of the lipidomes, whose regioisomers were distinguished, exhibit a uniquely defined distribution of acyl chains within each lipid class; that is, sn-1 and sn-2 in the cases of glycerophospholipids or sn-2 and (sn-1, sn-3) in the cases of triacylglycerols.


Journal of Lipid Research | 2001

Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography.

Cynthia J. DeLong; Paul R. S. Baker; Michael P. Samuel; Zheng Cui; Michael J. Thomas


American Journal of Physiology-cell Physiology | 2004

Glycolate and glyoxylate metabolism in HepG2 cells

Paul R. S. Baker; Scott D. Cramer; Martha Kennedy; Dean G. Assimos; Ross P. Holmes


Biochimica et Biophysica Acta | 2005

Stress-induced platelet-activating factor synthesis in human neutrophils

John Owen; Paul R. S. Baker; Joseph T. O'Flaherty; Michael J. Thomas; Michael P. Samuel; Rhonda E. Wooten; Robert L. Wykle

Collaboration


Dive into the Paul R. S. Baker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dean G. Assimos

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

John Owen

Wake Forest University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. Thomas

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge