Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Rabinowitz is active.

Publication


Featured researches published by Paul Rabinowitz.


Science | 2013

Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen

Aldo Antognini; F. Nez; Karsten Schuhmann; F. D. Amaro; F. Biraben; João Cardoso; D.S. Covita; A. Dax; Satish Dhawan; Marc Diepold; L.M.P. Fernandes; Adolf Giesen; Andrea L. Gouvea; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Cheng-Yang Kao; P. Knowles; F. Kottmann; Eric-Olivier Le Bigot; Yi-Wei Liu; José A. M. Lopes; L. Ludhova; Cristina M. B. Monteiro; F. Mulhauser; Tobias Nebel; Paul Rabinowitz; Joaquim M. F. Dos Santos; L.A. Schaller

Proton Still Too Small Despite a protons tiny size, it is possible to measure its radius based on its charge or magnetization distributions. Traditional measurements of proton radius were based on the scattering between protons and electrons. Recently, a precision measurement of a line in the spectrum of muonium—an atom consisting of a proton and a muon, instead of an electron—revealed a radius inconsistent with that deduced from scattering studies. Antognini et al. (p. 417; see the Perspective by Margolis) examined a different spectral line of muonium, with results less dependent on theoretical analyses, yet still inconsistent with the scattering result; in fact, the discrepancy increased. A precision spectroscopic measurement of the proton radius indicates a growing discrepancy with respect to scattering results. [Also see Perspective by Margolis] Accurate knowledge of the charge and Zemach radii of the proton is essential, not only for understanding its structure but also as input for tests of bound-state quantum electrodynamics and its predictions for the energy levels of hydrogen. These radii may be extracted from the laser spectroscopy of muonic hydrogen (μp, that is, a proton orbited by a muon). We measured the 2S1/2F=0-2P3/2F=1 transition frequency in μp to be 54611.16(1.05) gigahertz (numbers in parentheses indicate one standard deviation of uncertainty) and reevaluated the 2S1/2F=1-2P3/2F=2 transition frequency, yielding 49881.35(65) gigahertz. From the measurements, we determined the Zemach radius, rZ = 1.082(37) femtometers, and the magnetic radius, rM = 0.87(6) femtometer, of the proton. We also extracted the charge radius, rE = 0.84087(39) femtometer, with an order of magnitude more precision than the 2010-CODATA value and at 7σ variance with respect to it, thus reinforcing the proton radius puzzle.


Applied Physics Letters | 2004

Single-cell detection by cavity ring-down spectroscopy

Peter B. Tarsa; Aislyn D. Wist; Paul Rabinowitz; Kevin K. Lehmann

The implementation of cavity ring-down spectroscopy in an optical fiber resonator extends the viability of this highly sensitive technique for label-free detection of biological species. By chemically treating the surface of discrete tapered sensing regions along the length of a physically extended optical fiber resonator, we show single-cell sensitivity arising from optical scattering of the evanescent field surrounding the fiber. The observed detection limits, based on a minimum detectable scattering cross section on the order of 10μm2, suggest a broad range of new applications in a simple, inexpensive device for real-time cavity ring-down biosensing.


IEEE Journal of Quantum Electronics | 2009

Thin-Disk Yb:YAG Oscillator-Amplifier Laser, ASE, and Effective Yb:YAG Lifetime

Aldo Antognini; Karsten Schuhmann; F. D. Amaro; F. Biraben; A. Dax; Adolf Giesen; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Cheng-Yang Kao; Paul E. Knowles; F. Kottmann; E.-O. Le Bigot; Yi-Wei Liu; L. Ludhova; N. Moschuring; F. Mulhauser; Tobias Nebel; F. Nez; Paul Rabinowitz; Catherine Schwob; D. Taqqu; Randolf Pohl

We report on a thin-disk Yb:YAG laser made from a Q-switched oscillator and a multipass amplifier delivering pulses of 48 mJ at 1030 nm. The peculiar requirements for this laser are the short delay time (< 500 ns) between electronic trigger and optical output pulse and the time randomness with which these triggers occur (with trigger to next trigger delay ges 1.5 ms). Details concerning the oscillator dynamics (-switching cycle, intensity stabilization), and the peculiar amplifier layout are given. Simulations of the beam propagation in the amplifier based on the Collins integral and the measured aspherical components of the disk reproduce well the measured beam intensity profiles (with higher order intensity moments) and gains. Measurements of the thermal lens and ASE effects of the disk are also presented. A novel method to deduce the effective Yb:YAG upper state lifetime (under real laser operation and including ASE effects) is presented. That knowledge is necessary to determine gain and stored energy in the active medium and to understand the limiting factors for energy scaling of thin-disk lasers.


Science | 2016

Laser spectroscopy of muonic deuterium

Randolf Pohl; F. Nez; L.M.P. Fernandes; F. D. Amaro; F. Biraben; João Cardoso; D. S. Covita; A. Dax; Satish Dhawan; Marc Diepold; Adolf Giesen; Andrea L. Gouvea; Thomas Graf; T. W. Hänsch; P. Indelicato; L. Julien; Paul E. Knowles; F. Kottmann; Eric-Olivier Le Bigot; Yi-Wei Liu; José A. M. Lopes; L. Ludhova; Cristina M. B. Monteiro; F. Mulhauser; Tobias Nebel; Paul Rabinowitz; Joaquim M. F. Dos Santos; L.A. Schaller; Karsten Schuhmann; Catherine Schwob

The deuteron is too small, too The radius of the proton has remained a point of debate ever since the spectroscopy of muonic hydrogen indicated a large discrepancy from the previously accepted value. Pohl et al. add an important clue for solving this so-called proton radius puzzle. They determined the charge radius of the deuteron, a nucleus consisting of a proton and a neutron, from the transition frequencies in muonic deuterium. Mirroring the proton radius puzzle, the radius of the deuteron was several standard deviations smaller than the value inferred from previous spectroscopic measurements of electronic deuterium. This independent discrepancy points to experimental or theoretical error or even to physics beyond the standard model. Science, this issue p. 669 The charge radius of the deuteron is several standard deviations smaller than the previously accepted value. The deuteron is the simplest compound nucleus, composed of one proton and one neutron. Deuteron properties such as the root-mean-square charge radius rd and the polarizability serve as important benchmarks for understanding the nuclear forces and structure. Muonic deuterium μd is the exotic atom formed by a deuteron and a negative muon μ–. We measured three 2S-2P transitions in μd and obtain rd = 2.12562(78) fm, which is 2.7 times more accurate but 7.5σ smaller than the CODATA-2010 value rd = 2.1424(21) fm. The μd value is also 3.5σ smaller than the rd value from electronic deuterium spectroscopy. The smaller rd, when combined with the electronic isotope shift, yields a “small” proton radius rp, similar to the one from muonic hydrogen, amplifying the proton radius puzzle.


Optics Letters | 2004

Cavity ringdown strain gauge

Peter B. Tarsa; Diane M. Brzozowski; Paul Rabinowitz; Kevin K. Lehmann

Biconical tapered single-mode fiber, which is common in many telecommunications components, offers an alternative sensor to typical optical fiber strain gauges that are susceptible to temperature and pressure effects and require expensive and sophisticated signal acquisition systems. Cavity ringdown spectroscopy, a technique commonly applied to high-sensitivity chemical analysis, offers detection sensitivity advantages that can be used to improve strain measurement with biconical tapers. Combining these two technologies in a spatially extended resonator, we demonstrate a minimum detectable change in ringdown time of 0.08%, corresponding to a minimum detectable displacement of 4.8 nm, and a sensitivity to strain as small as 79 n epsilon/square root(Hz) over a 5-mm taper length.


Applied Physics Letters | 1969

``LAMB DIP'' SPECTROSCOPY APPLIED TO SF6

Paul Rabinowitz; R. Keller; J. T. LaTourrette

Line centers of a number of previously unresolved SF6 transitions of the fundamental ν3 band have been observed and their frequencies have been determined relative to the P‐branch transitions of the CO2 10.6‐μ laser. Measurements of dip widths at small saturation levels yielded a determination of the SF6–SF6 cross section for phase interruption. Observation of a multiplicity of absorption line centers over the tuning range of the P(20) laser transition, several well within one SF6 Doppler width of 29 MHz, verifies the complex nature of the P(20) line absorption found by other workers.


IEEE Journal of Quantum Electronics | 1980

Laser chemistry experiments with UF 6

J. Horsley; Paul Rabinowitz; A. Stein; D. Cox; R. Brickman; A. Kaldor

This paper summarizes the results of research in a number of different areas of the laser chemistry of UF 6 . These include: IR excitation and unimolecular dissociation; two color IR excitation; atom-molecule reactions; and UV photodissociation and photochemistry.


Hyperfine Interactions | 1999

Laser spectroscopy of the Lamb shift in muonic hydrogen

D. Taqqu; F. Biraben; C.A.N. Conde; T. W. Hänsch; F. J. Hartmann; P. Hauser; P. Indelicato; Paul E. Knowles; F. Kottmann; F. Mulhauser; C. Petitjean; R. Pohl; Paul Rabinowitz; R. Rosenfelder; J.M.F. Santos; W. Schott; L. M. Simons; J.F.C.A. Veloso

The muonic hydrogen atom in the 2s state provides the possibility of achieving high precision laser spectroscopy experiments from which a high precision value of the proton radius can be deduced. This will ultimately allow an increased precision in the test of QED in bound systems. Important progress has been made in recent years in the ability to stop muons in a low pressure gas target and in the understanding of the 2s-metastability in muonic hydrogen. As a consequence the 2s–2p laser spectroscopy experiment is now feasible and we present here the basic experimental concept considered by our collaboration.


Hyperfine Interactions | 2001

The Muonic Hydrogen Lamb Shift Experiment at PSI

F. Kottmann; W. Amir; F. Biraben; C.A.N. Conde; Satish Dhawan; T. W. Hänsch; F. J. Hartmann; V. W. Hughes; O. Huot; P. Indelicato; L. Julien; P. Knowles; S. Kazamias; Yi-Wei Liu; F. Mulhauser; F. Nez; Randolf Pohl; Paul Rabinowitz; J.M.F. dos Santos; L.A. Schaller; H. Schneuwly; W. Schott; D. Taqqu; J.F.C.A. Veloso

A measurement of the 2S Lamb shift in muonic hydrogen (μ−p) is being prepared at the Paul Scherrer Institute (PSI). The goal of the experiment is to measure the energy difference ΔE(25P3/2−23S1/2) by laser spectroscopy (λ≈6μm) to a precision of 30 ppm and to deduce the root mean square (rms) proton charge radius with 10−3 relative accuracy, 20 times more precise than presently known.An important prerequisite to this experiment is the availability of long-lived μp2S-atoms. A 2S-lifetime of ∼1 μs – sufficiently long to perform the laser experiment – at H2 gas pressures of 1–2 hPa was deduced from recent measurements of the collisional 2S-quenching rate. A new low-energy negative muon beam yields an order of magnitude more muon stops in a small low-density gas volume than a conventional cloud muon beam. A stack of ultra-thin carbon foils is the key element of a fast detector for keV-muons. The development of a 2 keV X-ray detector and a 3-stage laser system providing 0.5 mJ laser pulses at 6 μm is on the way.


Applied Optics | 2009

Brewster angle prism retroreflectors for cavity enhanced spectroscopy

Kevin K. Lehmann; Paul S. Johnston; Paul Rabinowitz

The design of a high finesse optical cavity made from two prism retroreflectors is fully described. Optical beam propagation calculations to determine the specification of prism angles and relative dimensions, the size of the astigmatic TEM00 beam as it propagates in the cavity, and the sensitivity of the optic axis to changes in prism alignment and fabrication errors are presented. The effects of material dispersion are also quantified for three different materials: fused silica, calcium fluoride, and barium fluoride. The predictions made are found to be in good agreement with experimental results obtained from prisms we had made from fused silica. Prisms made of CaF2 and BaF2 are predicted to be useful for applications in the UV and mid-IR spectral regions, respectively.

Collaboration


Dive into the Paul Rabinowitz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. Biraben

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Wei Liu

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Dax

Paul Scherrer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge