Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Robach is active.

Publication


Featured researches published by Paul Robach.


The Journal of Physiology | 2007

Erythropoietin treatment elevates haemoglobin concentration by increasing red cell volume and depressing plasma volume

Carsten Lundby; Jonas Juhl Thomsen; Robert Boushel; Maria Koskolou; Jørgen Warberg; Jose A. L. Calbet; Paul Robach

Erythropoietin (Epo) has been suggested to affect plasma volume, and would thereby possess a mechanism apart from erythropoiesis to increase arterial oxygen content. This, and potential underlying mechanisms, were tested in eight healthy subjects receiving 5000 IU recombinant human Epo (rHuEpo) for 15 weeks at a dose frequency aimed to increase and maintain haematocrit at approximately 50%. Red blood cell volume was increased from 2933 ± 402 ml before rHuEpo treatment to 3210 ± 356 (P < 0.01), 3117 ± 554 (P < 0.05), and 3172 ± 561 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. This was accompanied by a decrease in plasma volume from 3645 ± 538 ml before rHuEpo treatment to 3267 ± 333 (P < 0.01), 3119 ± 499 (P < 0.05), and 3323 ± 521 ml (P < 0.01) after 5, 11 and 13 weeks, respectively. Concomitantly, plasma renin activity and aldosterone concentration were reduced. This maintained blood volume relatively unchanged, with a slight transient decrease at week 11, such that blood volume was 6578 ± 839 ml before rHuEpo treatment, and 6477 ± 573 (NS), 6236 ± 908 (P < 0.05), and 6495 ± 935 ml (NS), after 5, 11 and 13 weeks of treatment. We conclude that Epo treatment in healthy humans induces an elevation in haemoglobin concentration by two mechanisms: (i) an increase in red cell volume; and (ii) a decrease in plasma volume, which is probably mediated by a downregulation of the rennin–angiotensin–aldosterone axis. Since the relative contribution of plasma volume changes to the increments in arterial oxygen content was between 37.9 and 53.9% during the study period, this mechanism seems as important for increasing arterial oxygen content as the well‐known erythropoietic effect of Epo.


Journal of Applied Physiology | 2012

“Live high–train low” using normobaric hypoxia: a double-blinded, placebo-controlled study

Christoph Siebenmann; Paul Robach; Robert A. Jacobs; Peter Rasmussen; Nikolai Baastrup Nordsborg; Víctor Díaz; Andreas Christ; Niels Vidiendal Olsen; Marco Maggiorini; Carsten Lundby

The combination of living at altitude and training near sea level [live high-train low (LHTL)] may improve performance of endurance athletes. However, to date, no study can rule out a potential placebo effect as at least part of the explanation, especially for performance measures. With the use of a placebo-controlled, double-blinded design, we tested the hypothesis that LHTL-related improvements in endurance performance are mediated through physiological mechanisms and not through a placebo effect. Sixteen endurance cyclists trained for 8 wk at low altitude (<1,200 m). After a 2-wk lead-in period, athletes spent 16 h/day for the following 4 wk in rooms flushed with either normal air (placebo group, n = 6) or normobaric hypoxia, corresponding to an altitude of 3,000 m (LHTL group, n = 10). Physiological investigations were performed twice during the lead-in period, after 3 and 4 wk during the LHTL intervention, and again, 1 and 2 wk after the LHTL intervention. Questionnaires revealed that subjects were unaware of group classification. Weekly training effort was similar between groups. Hb mass, maximal oxygen uptake (VO(2)) in normoxia, and at a simulated altitude of 2,500 m and mean power output in a simulated, 26.15-km time trial remained unchanged in both groups throughout the study. Exercise economy (i.e., VO(2) measured at 200 W) did not change during the LHTL intervention and was never significantly different between groups. In conclusion, 4 wk of LHTL, using 16 h/day of normobaric hypoxia, did not improve endurance performance or any of the measured, associated physiological variables.


Cellular and Molecular Life Sciences | 2009

The response of human skeletal muscle tissue to hypoxia.

Carsten Lundby; Jose A. L. Calbet; Paul Robach

Hypoxia refers to environmental or clinical settings that potentially threaten tissue oxygen homeostasis. One unique aspect of skeletal muscle is that, in addition to hypoxia, oxygen balance in this tissue may be further compromised when exercise is superimposed on hypoxia. This review focuses on the cellular and molecular responses of human skeletal muscle to acute and chronic hypoxia, with emphasis on physical exercise and training. Based on published work, it is suggested that hypoxia does not appear to promote angiogenesis or to greatly alter oxidative enzymes in skeletal muscle at rest. Although the HIF-1 pathway in skeletal muscle is still poorly documented, emerging evidence suggests that muscle HIF-1 signaling is only activated to a minor degree by hypoxia. On the other hand, combining hypoxia with exercise appears to improve some aspects of muscle O2 transport and/or metabolism.


Journal of Applied Physiology | 2011

Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes

Robert A. Jacobs; Peter Rasmussen; Christoph Siebenmann; Víctor Díaz; Max Gassmann; Dominik Pesta; Erich Gnaiger; Nikolai Baastrup Nordsborg; Paul Robach; Carsten Lundby

Human endurance performance can be predicted from maximal oxygen consumption (Vo(2max)), lactate threshold, and exercise efficiency. These physiological parameters, however, are not wholly exclusive from one another, and their interplay is complex. Accordingly, we sought to identify more specific measurements explaining the range of performance among athletes. Out of 150 separate variables we identified 10 principal factors responsible for hematological, cardiovascular, respiratory, musculoskeletal, and neurological variation in 16 highly trained cyclists. These principal factors were then correlated with a 26-km time trial and test of maximal incremental power output. Average power output during the 26-km time trial was attributed to, in order of importance, oxidative phosphorylation capacity of the vastus lateralis muscle (P = 0.0005), steady-state submaximal blood lactate concentrations (P = 0.0017), and maximal leg oxygenation (sO(2LEG)) (P = 0.0295), accounting for 78% of the variation in time trial performance. Variability in maximal power output, on the other hand, was attributed to total body hemoglobin mass (Hb(mass); P = 0.0038), Vo(2max) (P = 0.0213), and sO(2LEG) (P = 0.0463). In conclusion, 1) skeletal muscle oxidative capacity is the primary predictor of time trial performance in highly trained cyclists; 2) the strongest predictor for maximal incremental power output is Hb(mass); and 3) overall exercise performance (time trial performance + maximal incremental power output) correlates most strongly to measures regarding the capability for oxygen transport, high Vo(2max) and Hb(mass), in addition to measures of oxygen utilization, maximal oxidative phosphorylation, and electron transport system capacities in the skeletal muscle.


Journal of Applied Physiology | 2008

Does recombinant human Epo increase exercise capacity by means other than augmenting oxygen transport

Carsten Lundby; Paul Robach; Robert Boushel; Jonas Juhl Thomsen; Peter Rasmussen; Maria Koskolou; Jose A. L. Calbet

This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.


Blood | 2009

Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin

Paul Robach; Stefania Recalcati; Domenico Girelli; Cecilia Gelfi; Niels Jacob Aachmann-Andersen; Jonas Juhl Thomsen; Anne M. Norgaard; Alessandra Alberghini; Natascia Campostrini; Annalisa Castagna; Agnese Viganò; Paolo Santambrogio; Tibor Kempf; Kai C. Wollert; Stéphane Moutereau; Carsten Lundby; Gaetano Cairo

The high iron demand associated with enhanced erythropoiesis during high-altitude hypoxia leads to skeletal muscle iron mobilization and decrease in myoglobin protein levels. To investigate the effect of enhanced erythropoiesis on systemic and muscle iron metabolism under nonhypoxic conditions, 8 healthy volunteers were treated with recombinant erythropoietin (rhEpo) for 1 month. As expected, the treatment efficiently increased erythropoiesis and stimulated bone marrow iron use. It was also associated with a prompt and considerable decrease in urinary hepcidin and a slight transient increase in GDF-15. The increased iron use and reduced hepcidin levels suggested increased iron mobilization, but the treatment was associated with increased muscle iron and L ferritin levels. The muscle expression of transferrin receptor and ferroportin was up-regulated by rhEpo administration, whereas no appreciable change in myoglobin levels was observed, which suggests unaltered muscle oxygen homeostasis. In conclusion, under rhEpo stimulation, the changes in the expression of muscle iron proteins indicate the occurrence of skeletal muscle iron accumulation despite the remarkable hepcidin suppression that may be mediated by several factors, such as rhEpo or decreased transferrin saturation or both.


The Journal of Physiology | 2008

During hypoxic exercise some vasoconstriction is needed to match O2 delivery with O2 demand at the microcirculatory level.

Carsten Lundby; Robert Boushel; Paul Robach; Kirsten Møller; Bengt Saltin; Jose A. L. Calbet

To test the hypothesis that the increased sympathetic tonus elicited by chronic hypoxia is needed to match O2 delivery with O2 demand at the microvascular level eight male subjects were investigated at 4559 m altitude during maximal exercise with and without infusion of ATP (80 μg (kg body mass)−1 min−1) into the right femoral artery. Compared to sea level peak leg vascular conductance was reduced by 39% at altitude. However, the infusion of ATP at altitude did not alter femoral vein blood flow (7.6 ± 1.0 versus 7.9 ± 1.0 l min−1) and femoral arterial oxygen delivery (1.2 ± 0.2 versus 1.3 ± 0.2 l min−1; control and ATP, respectively). Despite the fact that with ATP mean arterial blood pressure decreased (106.9 ± 14.2 versus 83.3 ± 16.0 mmHg, P < 0.05), peak cardiac output remained unchanged. Arterial oxygen extraction fraction was reduced from 85.9 ± 5.3 to 72.0 ± 10.2% (P < 0.05), and the corresponding venous O2 content was increased from 25.5 ± 10.0 to 46.3 ± 18.5 ml l−1 (control and ATP, respectively, P < 0.05). With ATP, leg arterial–venous O2 difference was decreased (P < 0.05) from 139.3 ± 9.0 to 116.9 ± 8.4−1 and leg was 20% lower compared to the control trial (1.1 ± 0.2 versus 0.9 ± 0.1 l min−1) (P= 0.069). In summary, at altitude, some degree of vasoconstriction is needed to match O2 delivery with O2 demand. Peak cardiac output at altitude is not limited by excessive mean arterial pressure. Exercising leg is not limited by restricted vasodilatation in the altitude‐acclimatized human.


Experimental Physiology | 2013

Mitochondrial function in human skeletal muscle following high‐altitude exposure

Robert A. Jacobs; Robert Boushel; Cynthia Wright-Paradis; Jose A. L. Calbet; Paul Robach; Erich Gnaiger; Carsten Lundby

•  What is the central question of this study? Are the enzymatic alterations in human skeletal muscle observed following 9–11 days of exposure to high altitude reflected in mitochondrial function? •  What is the main finding and its importance? The main findings of this study are that the capacity fat oxidation, individualized respiration capacity through mitochondrial complex I and II, and electron coupling efficiency are not greatly affected by 9–11 days of exposure to high altitude. The importance of this data is that high altitude exposure failed to affect integrated measures of mitochondrial functional capacity in skeletal muscle despite significant decrements to enzyme concentrations involved in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation.


International Journal of Sports Medicine | 2009

Effects of acute hypoxic exposure on prooxidant/antioxidant balance in elite endurance athletes.

V. Pialoux; R. Mounier; E. Rock; A. Mazur; Laurent Schmitt; Jean-Paul Richalet; Paul Robach; Jean Coudert; Nicole Fellmann

We investigated whether acute hypoxic exposures could modify the pro-oxidant/antioxidant balance in elite endurance athletes, known to have efficient antioxidant status. Forty-one elite athletes were subjected to two hypoxic tests: one at an altitude of 4 800 m during 10-min of mild exercise (4 800 m test) and the second at rest for 3 h at an altitude of 3 000 m (3 000 m test). Plasma levels of advanced oxidation protein products (AOPP), malondialdehydes (MDA), ferric reducing antioxidant power (FRAP) and lipid-soluble antioxidants were measured before and immediately after the 4 800 m test and at the end of the 3 000 m test. The 4 800 m and the 3 000 m tests induced a significant increase in the level of MDA and AOPP (+7.1% and +71.7% for 4 800 m test and +8.6% and +40.9% for 3 000 m test). The changes in plasma MDA and arterial oxygen saturations were significantly correlated (r=0.35) during the 3 000 m test. FRAP values (-13%) and alpha-tocopherol (-21%) were decreased following the 3 000 m test. However, following the 4 800 m test, only alpha-tocopherol was decreased (-16%). These results provide evidence that the highly-trained athletes do not have the antioxidant buffering capacity to counterbalance free radical over-production generated by acute hypoxic exposure, with or without mild exercise.


PLOS ONE | 2008

The Ergogenic Effect of Recombinant Human Erythropoietin on V̇O2max Depends on the Severity of Arterial Hypoxemia

Paul Robach; Jose A. L. Calbet; Jonas Juhl Thomsen; Robert Boushel; Pascal Mollard; Peter A. Rasmussen; Carsten Lundby

Treatment with recombinant human erythropoietin (rhEpo) induces a rise in blood oxygen-carrying capacity (CaO2) that unequivocally enhances maximal oxygen uptake (V̇O2max) during exercise in normoxia, but not when exercise is carried out in severe acute hypoxia. This implies that there should be a threshold altitude at which V̇O2max is less dependent on CaO2. To ascertain which are the mechanisms explaining the interactions between hypoxia, CaO2 and V̇O2max we measured systemic and leg O2 transport and utilization during incremental exercise to exhaustion in normoxia and with different degrees of acute hypoxia in eight rhEpo-treated subjects. Following prolonged rhEpo treatment, the gain in systemic V̇O2max observed in normoxia (6–7%) persisted during mild hypoxia (8% at inspired O2 fraction (FIO2) of 0.173) and was even larger during moderate hypoxia (14–17% at FIO2 = 0.153–0.134). When hypoxia was further augmented to FIO2 = 0.115, there was no rhEpo-induced enhancement of systemic V̇O2max or peak leg V̇O2. The mechanism highlighted by our data is that besides its strong influence on CaO2, rhEpo was found to enhance leg V̇O2max in normoxia through a preferential redistribution of cardiac output toward the exercising legs, whereas this advantageous effect disappeared during severe hypoxia, leaving augmented CaO2 alone insufficient for improving peak leg O2 delivery and V̇O2. Finally, that V̇O2max was largely dependent on CaO2 during moderate hypoxia but became abruptly CaO2-independent by slightly increasing the severity of hypoxia could be an indirect evidence of the appearance of central fatigue.

Collaboration


Dive into the Paul Robach's collaboration.

Top Co-Authors

Avatar

Carsten Lundby

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jose A. L. Calbet

University of Las Palmas de Gran Canaria

View shared research outputs
Top Co-Authors

Avatar

Julien V. Brugniaux

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Boushel

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Carsten Lundby

Copenhagen University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge