Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul S. Cremer is active.

Publication


Featured researches published by Paul S. Cremer.


Nature | 2001

Stochastic sensors inspired by biology.

Hagan Bayley; Paul S. Cremer

Sensory systems use a variety of membrane-bound receptors, including responsive ion channels, to discriminate between a multitude of stimuli. Here we describe how engineered membrane pores can be used to make rapid and sensitive biosensors with potential applications that range from the detection of biological warfare agents to pharmaceutical screening. Notably, use of the engineered pores in stochastic sensing, a single-molecule detection technology, reveals the identity of an analyte as well as its concentration.


Surface Science Reports | 2006

Solid supported lipid bilayers: From biophysical studies to sensor design

Edward T. Castellana; Paul S. Cremer

Abstract The lipid bilayer is one of the most eloquent and important self-assembled structures in nature. It not only provides a protective container for cells and sub-cellular compartments, but also hosts much of the machinery for cellular communication and transport across the cell membrane. Solid supported lipid bilayers provide an excellent model system for studying the surface chemistry of the cell. Moreover, they are accessible to a wide variety of surface-specific analytical techniques. This makes it possible to investigate processes such as cell signaling, ligand–receptor interactions, enzymatic reactions occurring at the cell surface, as well as pathogen attack. In this review, the following membrane systems are discussed: black lipid membranes, solid supported lipid bilayers, hybrid lipid bilayers, and polymer cushioned lipid bilayers. Examples of how supported lipid membrane technology is interfaced with array based systems by photolithographic patterning, spatial addressing, microcontact printing, and microfluidic patterning are explored. Also, the use of supported lipid bilayers in microfluidic devices for the development of lab-on-a-chip based platforms is examined. Finally, the utility of lipid bilayers in nanotechnology and future directions in this area are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The inverse and direct Hofmeister series for lysozyme

Yanjie Zhang; Paul S. Cremer

Anion effects on the cloud-point temperature for the liquid−liquid phase transition of lysozyme were investigated by temperature gradient microfluidics under a dark field microscope. It was found that protein aggregation in salt solutions followed 2 distinct Hofmeister series depending on salt concentration. Namely, under low salt conditions the association of anions with the positively charged lysozyme surface dominated the process and the phase transition temperature followed an inverse Hofmeister series. This inverse series could be directly correlated to the size and hydration thermodynamics of the anions. At higher salt concentrations, the liquid–liquid phase transition displayed a direct Hofmeister series that correlated with the polarizability of the anions. A simple model was derived to take both charge screening and surface tension effects into account at the protein/water interface. Fitting the thermodynamic data to this model equation demonstrated its validity in both the high and low salt regimes. These results suggest that in general positively charged macromolecular systems should show inverse Hofmeister behavior only at relatively low salt concentrations, but revert to a direct Hofmeister series as the salt concentration is increased.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A sensitive, versatile microfluidic assay for bacterial chemotaxis

Hanbin Mao; Paul S. Cremer; Michael D. Manson

We have developed a microfluidic assay for bacterial chemotaxis in which a gradient of chemoeffectors is established inside a microchannel via diffusion between parallel streams of liquid in laminar flow. The random motility and chemotactic responses to l-aspartate, l-serine, l-leucine, and Ni2+ of WT and chemotactic-mutant strains of Escherichia coli were measured. Migration of the cells was quantified by counting the cells accumulating in each of 22 outlet ports. The sensitivity of the assay is attested to by the significant response of WT cells to 3.2 nM l-aspartate, a concentration three orders of magnitude lower than the detection limit in the standard capillary assay. The response to repellents was as robust and easily recorded as the attractant response. A surprising discovery was that l-leucine is sensed by Tar as an attractant at low concentrations and by Tsr as a repellent at higher concentrations. This assay offers superior performance and convenience relative to the existing assays to measure bacterial tactic responses, and it is flexible enough to be used in a wide range of different applications.


Journal of Physical Chemistry B | 2008

Effects of Hofmeister Anions on the Phase Transition Temperature of Elastin-like Polypeptides

Younhee Cho; Yanjie Zhang; Trine Christensen; Laura Sagle; Ashutosh Chilkoti; Paul S. Cremer

The modulation of the lower critical solution temperature (LCST) of two elastin-like polypeptides (ELPs) was investigated in the presence of 11 sodium salts that span the Hofmeister series for anions. It was found that the hydrophobic collapse/aggregation of these ELPs generally followed the series. Specifically, kosmotropic anions decreased the LCST by polarizing interfacial water molecules involved in hydrating amide groups on the ELPs. On the other hand, chaotropic anions lowered the LCST through a surface tension effect. Additionally, chaotropic anions showed salting-in properties at low salt concentrations that were related to the saturation binding of anions with the biopolymers. These overall mechanistic effects were similar to those previously found for the hydrophobic collapse and aggregation of poly(N-isopropylacrylamide), PNIPAM. There is, however, a crucial difference between PNIPAM and ELPs. Namely, PNIPAM undergoes a two-step collapse process as a function of temperature in the presence of sufficient concentrations of kosmotropic salts. By contrast, ELPs undergo collapse in a single step in all cases studied herein. This suggests that the removal of water molecules from around the amide moieties triggers the removal of hydrophobic hydration waters in a highly coupled process. There are also some key differences between the LCST behavior of the two ELPs. Specifically, the more hydrophilic ELP V5A2G(3)-120 construct displays collapse/aggregation behavior that is consistent with a higher concentration of anions partitioning to polymer/aqueous interface as compared to the more hydrophobic ELP V(5)-120. It was also found that larger anions could bind with ELP V5A2G(3)-120 more readily in comparison with ELP V(5)-120. These latter results were interpreted in terms of relative binding site accessibility of the anion for the ELP.


Journal of the American Chemical Society | 2012

Molecular Mechanisms of Ion-Specific Effects on Proteins

Kelvin B. Rembert; Jana Paterová; Jan Heyda; Christian Hilty; Pavel Jungwirth; Paul S. Cremer

The specific binding sites of Hofmeister ions with an uncharged 600-residue elastin-like polypeptide, (VPGVG)(120), were elucidated using a combination of NMR and thermodynamic measurements along with molecular dynamics simulations. It was found that the large soft anions such as SCN(-) and I(-) interact with the polypeptide backbone via a hybrid binding site that consists of the amide nitrogen and the adjacent α-carbon. The hydrocarbon groups at these sites bear a slight positive charge, which enhances anion binding without disrupting specific hydrogen bonds to water molecules. The hydrophobic side chains do not contribute significantly to anion binding or the corresponding salting-in behavior of the biopolymer. Cl(-) binds far more weakly to the amide nitrogen/α-carbon binding site, while SO(4)(2-) is repelled from both the backbone and hydrophobic side chains of the polypeptide. The Na(+) counterions are also repelled from the polypeptide. The identification of these molecular-level binding sites provides new insights into the mechanism of peptide-anion interactions.


Journal of the American Chemical Society | 2009

Investigating the hydrogen-bonding model of urea denaturation.

Laura B. Sagle; Yanjie Zhang; Vladislav A. Litosh; Xin Chen; Younhee Cho; Paul S. Cremer

The direct binding mechanism for urea-based denaturation of proteins was tested with a thermoresponsive polymer, poly(N-isopropylacrylamide) (PNIPAM). Thermodynamic measurements of the polymers hydrophobic collapse were complemented by Fourier transform infrared (FTIR) spectroscopy, Stokes radius measurements, and methylated urea experiments. It was found that the lower critical solution temperature (LCST) of PNIPAM decreased as urea was added to the solution. Therefore, urea actually facilitated the hydrophobic collapse of the macromolecule. Moreover, these thermodynamic measurements were strongly correlated with amide I band data which indicated that the decrease in the LCST was coupled to the direct hydrogen bonding of urea to the amide moieties of the polymer. In addition, the hydrogen bonding was found to be highly cooperative, which is consistent with a cross-linking (bivalent binding) mechanism. Cross-linking was confirmed by Stokes radius measurements below the polymers LCST using gel filtration chromatography. Finally, phase transition measurements with methylurea, dimethylurea, and tetramethylurea indicated that these substituted compounds caused the LCST of PNIPAM to rise with increasing methyl group content. No evidence could be found for the direct binding of any of these methylated ureas to the polymer amide moieties by FTIR. These results are inconsistent with a direct hydrogen-bonding mechanism for the urea-induced denaturation of proteins.


Surface Science | 1995

The conversion of di-σ bonded ethylene to ethylidyne on Pt(111) monitored with sum frequency generation: evidence for an ethylidene (or ethyl) intermediate

Paul S. Cremer; C.D. Stanners; J.W. Niemantsverdriet; Y.R. Shen; G.A. Somorjai

Abstract The conversion of di-σ bonded ethylene (CH 2 CH 2 ) to ethylidyne (CCH 3 ) on the Pt(111) crystal surface was monitored with infrared-visible sum frequency generation (SFG) in the ν(CH) frequency range. The conversion began around 255 K and involved a third stable species that is neither di-σ bonded ethylene nor ethylidyne. This species manifested itself as a peak at 2957 cm −1 in the vibrational spectrum. Furthermore, we found the same species present during the conversion of vinyl iodide to ethylidyne on Pt(111). The 2957 cm −1 feature has been assigned to the CH 3 asymmetric stretch of ethylidene and/or ethyl.


ACS Nano | 2009

Evaporation-Induced Assembly of Quantum Dots into Nanorings

Jixin Chen; Wei-Ssu Liao; Xin Chen; Tinglu Yang; Stacey E. Wark; Dong Hee Son; James D. Batteas; Paul S. Cremer

Herein, we demonstrate the controlled formation of two-dimensional periodic arrays of ring-shaped nanostructures assembled from CdSe semiconductor quantum dots (QDs). The patterns were fabricated by using an evaporative templating method. This involves the introduction of an aqueous solution containing both quantum dots and polystyrene microspheres onto the surface of a planar hydrophilic glass substrate. The quantum dots became confined to the meniscus of the microspheres during evaporation, which drove ring assembly via capillary forces at the polystyrene sphere/glass substrate interface. The geometric parameters for nanoring formation could be controlled by tuning the size of the microspheres and the concentration of the QDs employed. This allowed hexagonal arrays of nanorings to be formed with thicknesses ranging from single dot necklaces to thick multilayer structures over surface areas of many square millimeters. Moreover, the diameter of the ring structures could be simultaneously controlled. A simple model was employed to explain the forces involved in the formation of nanoparticle nanorings.


Journal of Physical Chemistry B | 2009

On the Structure of Water at the Aqueous/Air Interface

Yubo Fan; Xin Chen; Lijiang Yang; Paul S. Cremer; Yi Qin Gao

Vibrational sum frequency spectroscopy (VSFS) and molecular dynamics (MD) simulations were used in concert to investigate the molecular structure and hydrogen bonding of the air/water interface. MD simulations were performed with a variety of water models. The results indicated that only the upper most two layers of water molecules are ordered in this system. There is a strong preference to have the top layer arranged such that the OH moiety points upward into the air. This orientational preference arises from two factors that involve the maximization of the number of hydrogen bonds formed and the minimization of partial charge that is exposed. Specifically, the lone pairs from oxygen are less likely to face into the air compared with the OH moiety because this would expose more partial charge and, therefore, be unfavorable on enthalpic grounds. The two-layer interfacial water structure model implies that there should be four distinct types of OH stretches for this system. Namely, one directs upward and another points downward in each layer. Interestingly, VSFS experiments revealed the presence of four OH stretch region peaks at 3117, 3222, 3448, and 3696 cm(-1). The phases of the 3117 and 3696 cm(-1) resonances carried a positive sign, which indicates that these features arise from OH groups with protons facing upward toward the air. The other two resonances emanate from OH groups with protons facing downward toward the bulk aqueous solution. On the basis of this, we assign the 3117 cm(-1) peak to the OH moiety from a water molecule in the second layer, which is hydrogen bonded upward toward the top layer. On the other hand, the peak at 3222 cm(-1) should arise from water molecules in the top layer with the OH moiety facing downward to hydrogen bond to the second layer. The 3448 cm(-1) peak arises from hydrogen bonding between water molecules in the second layer and the more disordered water molecules of the bulk liquid. Finally, the peak at 3696 cm(-1) is assigned to the free OH moiety pointing upward in the top layer.

Collaboration


Dive into the Paul S. Cremer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew A. Holden

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Gabor A. Somorjai

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Xingcai Su

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sho Kataoka

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge