Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul S. Maddox is active.

Publication


Featured researches published by Paul S. Maddox.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching

Jesse Stricker; Paul S. Maddox; E. D. Salmon; Harold P. Erickson

FtsZ, the major cytoskeletal component of the bacterial cell-division machine, assembles into a ring (the Z-ring) that contracts at septation. FtsZ is a bacterial homolog of tubulin, with similar tertiary structure, GTP hydrolysis, and in vitro assembly. We used green fluorescent protein-labeled FtsZ and fluorescence recovery after photobleaching to show that the E. coli Z-ring is extremely dynamic, continually remodeling itself with a half-time of 30 s. ZipA, a membrane protein involved in cell division that colocalizes with FtsZ, was equally dynamic. The Z-ring of the mutant ftsZ84, which has 1/10 the guanosine triphosphatase activity of wild-type FtsZ in vitro, showed a 9-fold slower turnover in vivo. This finding implies that assembly dynamics are determined primarily by GTP hydrolysis. Despite the greatly reduced assembly dynamics, the ftsZ84 cells divide with a normal cell-cycle time.


Nature Cell Biology | 2000

The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae

Paul S. Maddox; Kerry Bloom; E. D. Salmon

Microtubule assembly in Saccharomyces cerevisiae is initiated from sites within spindle pole bodies (SPBs) in the nuclear envelope. Microtubule plus ends are thought to be organized distal to the SPBs, while minus ends are proximal. Several hypotheses for the function of microtubule motor proteins in force generation and regulation of microtubule assembly propose that assembly and disassembly occur at minus ends as well as at plus ends. Here we analyse microtubule assembly relative to the SPBs in haploid yeast cells expressing green fluorescent protein fused to α-tubulin, a microtubule subunit. Throughout the cell cycle, analysis of fluorescent speckle marks on cytoplasmic astral microtubules reveals that there is no detectable assembly or disassembly at minus ends. After laser-photobleaching, metaphase spindles recover about 63% of the bleached fluorescence, with a half-life of about 1 minute. After anaphase onset, photobleached marks in the interpolar spindle are persistent and do not move relative to the SPBs. In late anaphase, the elongated spindles disassemble at the microtubule plus ends. These results show for astral and anaphase interpolar spindle microtubules, and possibly for metaphase spindle microtubules, that microtubule assembly and disassembly occur at plus, and not minus, ends.


Nature | 2003

Determining the position of the cell division plane

Julie C. Canman; Lisa A. Cameron; Paul S. Maddox; Aaron F. Straight; Jennifer S. Tirnauer; Timothy J. Mitchison; Guowei Fang; Tarun M. Kapoor; E. D. Salmon

Proper positioning of the cell division plane during mitosis is essential for determining the size and position of the two daughter cells—a critical step during development and cell differentiation. A bipolar microtubule array has been proposed to be a minimum requirement for furrow positioning in mammalian cells, with furrows forming at the site of microtubule plus-end overlap between the spindle poles. Observations in other species have suggested, however, that this may not be true. Here we show, by inducing mammalian tissue cells with monopolar spindles to enter anaphase, that furrow formation in cultured mammalian cells does not require a bipolar spindle. Unexpectedly, cytokinesis occurs at high frequency in monopolar cells. Division always occurs at a cortical position distal to the chromosomes. Analysis of microtubules during cytokinesis in cells with monopolar and bipolar spindles shows that a subpopulation of stable microtubules extends past chromosomes and binds to the cell cortex at the site of furrow formation. Our data are consistent with a model in which chromosomes supply microtubules with factors that promote microtubule stability and furrowing.


Journal of Cell Biology | 2003

Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics

Paul S. Maddox; Aaron F. Straight; Peg Coughlin; Timothy J. Mitchison; E. D. Salmon

Microtubule plus ends dynamically attach to kinetochores on mitotic chromosomes. We directly imaged this dynamic interface using high resolution fluorescent speckle microscopy and direct labeling of kinetochores in Xenopus extract spindles. During metaphase, kinetochores were stationary and under tension while plus end polymerization and poleward microtubule flux (flux) occurred at velocities varying from 1.5–2.5 μm/min. Because kinetochore microtubules polymerize at metaphase kinetochores, the primary source of kinetochore tension must be the spindle forces that produce flux and not a kinetochore-based mechanism. We infer that the kinetochore resists translocation of kinetochore microtubules through their attachment sites, and that the polymerization state of the kinetochore acts a “slip-clutch” mechanism that prevents detachment at high tension. At anaphase onset, kinetochores switched to depolymerization of microtubule plus ends, resulting in chromosome-to-pole rates transiently greater than flux. Kinetochores switched from persistent depolymerization to persistent polymerization and back again during anaphase, bistability exhibited by kinetochores in vertebrate tissue cells. These results provide the most complete description of spindle microtubule poleward flux to date, with important implications for the microtubule–kinetochore interface and for how flux regulates kinetochore function.


Current Biology | 2000

The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast

Dale L. Beach; Julie Thibodeaux; Paul S. Maddox; Elaine Yeh; Kerry Bloom

BACKGROUNDnTwo genetic pathways contribute to the fidelity of nuclear segregation during the process of budding in the yeast Saccharomyces cerevisiae. An early pathway, involving Kar9p and other proteins, orients the mitotic spindle along the mother-bud axis. Upon the onset of anaphase, cytoplasmic dynein provides the motive force for nuclear movement into the bud. Loss of either pathway results in nuclear-migration defects; loss of both is lethal. Here, to visualize the functional steps leading to correct spindle orientation along the mother-bud axis, we imaged live yeast cells expressing Kar9p and dynein as green fluorescent protein fusions.nnnRESULTSnTransport of Kar9p into the bud was found to require the myosin Myo2p. Kar9p interacted with microtubules through the microtubule-binding protein Bim1p and facilitated microtubule penetration into the bud. Once microtubules entered the bud, Kar9p provided a platform for microtubule capture at the bud cortex. Kar9p was also observed at sites of microtubule shortening in the bud, suggesting that Kar9p couples microtubule shortening to nuclear migration.nnnCONCLUSIONSnThus, Kar9p provides a key link between the actin cytoskeleton and microtubules early in the cell cycle. A cooperative mechanism between Kar9p and Myo2p facilitates the pre-anaphase orientation of the spindle. Later, Kar9p couples microtubule disassembly with nuclear migration.


Journal of Cell Biology | 2007

Functional genomics identifies a Myb domain–containing protein family required for assembly of CENP-A chromatin

Paul S. Maddox; Francie Hyndman; Joost Monen; Karen Oegema; Arshad Desai

Nucleosomes containing the centromere-specific histone H3 variant centromere protein A (CENP-A) create the chromatin foundation for kinetochore assembly. To understand the mechanisms that selectively target CENP-A to centromeres, we took a functional genomics approach in the nematode Caenorhabditis elegans, in which failure to load CENP-A results in a signature kinetochore-null (KNL) phenotype. We identified a single protein, KNL-2, that is specifically required for CENP-A incorporation into chromatin. KNL-2 and CENP-A localize to centromeres throughout the cell cycle in an interdependent manner and coordinately direct chromosome condensation, kinetochore assembly, and chromosome segregation. The isolation of KNL-2–associated chromatin coenriched CENP-A, indicating their close proximity on DNA. KNL-2 defines a new conserved family of Myb DNA-binding domain–containing proteins. The human homologue of KNL-2 is also specifically required for CENP-A loading and kinetochore assembly but is only transiently present at centromeres after mitotic exit. These results implicate a new protein class in the assembly of centromeric chromatin and suggest that holocentric and monocentric chromosomes share a common mechanism for CENP-A loading.


Nature Cell Biology | 2001

Drosophila APC2 and Armadillo participate in tethering mitotic spindles to cortical actin

Brooke M. McCartney; Donald G. McEwen; Elizabeth E. Grevengoed; Paul S. Maddox; Amy Bejsovec; Mark Peifer

Proper positioning of mitotic spindles ensures equal allocation of chromosomes to daughter cells. This often involves interactions between spindle and astral microtubules and cortical actin. In yeast and Caenorhabditis elegans, some of the protein machinery that connects spindles and cortex has been identified but, in most animal cells, this process remains mysterious. Here, we report that the tumour suppresser homologue APC2 and its binding partner Armadillo both play roles in spindle anchoring during the syncytial mitoses of early Drosophila embryos. Armadillo, α-catenin and APC2 all localize to sites of cortical spindle attachment. APC2–Armadillo complexes often localize with interphase microtubules. Zeste-white 3 kinase, which can phosphorylate Armadillo and APC, is also crucial for spindle positioning and regulates the localization of APC2–Armadillo complexes. Together, these data suggest that APC2, Armadillo and α-catenin provide an important link between spindles and cortical actin, and that this link is regulated by Zeste-white 3 kinase.


Chromosome Research | 2004

Holoer than thou: Chromosome segregation and kinetochore function in C. elegans

Paul S. Maddox; Karen Oegema; Arshad Desai; Iain M. Cheeseman

Kinetochores are proteinaceous organelles that assemble on centromeric DNA to direct chromosome segregation in all eukaryotes. While many aspects of kinetochore function are conserved, the nature of the chromosomal domain upon which kinetochores assemble varies dramatically between different species. In monocentric eukaryotes, kinetochores assemble on a localized region of each chromosome. In contrast, holocentric species such as the nematode Caenorhabditis elegans have diffuse kinetochores that form along the entire length of their chromosomes. Here, we discuss the nature of chromosome segregation in C. elegans. In addition to reviewing what is known about kinetochore function, chromosome structure, and chromosome movement, we consider the consequences of the specialized holocentric architecture on chromosome segregation.


Nature Cell Biology | 2005

Differential role of CENP-A in the segregation of holocentric C. elegans chromosomes during meiosis and mitosis

Joost Monen; Paul S. Maddox; Francie Hyndman; Karen Oegema; Arshad Desai

Two distinct chromosome architectures are prevalent among eukaryotes: monocentric, in which localized centromeres restrict kinetochore assembly to a single chromosomal site, and holocentric, in which diffuse kinetochores form along the entire chromosome length. During mitosis, both chromosome types use specialized chromatin, containing the histone H3 variant CENP-A, to direct kinetochore assembly. For the segregation of recombined homologous chromosomes during meiosis, monocentricity is thought to be crucial for limiting spindle-based forces to one side of a crossover and to prevent recombined chromatids from being simultaneously pulled towards both spindle poles. The mechanisms that allow holocentric chromosomes to avert this fate remain uncharacterized. Here, we show that markedly different mechanisms segregate holocentric chromosomes during meiosis and mitosis in the nematode Caenorhabditis elegans. Immediately prior to oocyte meiotic segregation, outer-kinetochore proteins were recruited to cup-like structures on the chromosome surface via a mechanism that is independent of CENP-A. In striking contrast to mitosis, both oocyte meiotic divisions proceeded normally following depletion of either CENP-A or the closely associated centromeric protein CENP-C. These findings highlight a pronounced difference between the segregation of holocentric chromosomes during meiosis and mitosis and demonstrate the potential to uncouple assembly of outer-kinetochore proteins from CENP-A chromatin.


Genes & Development | 2008

A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex.

Reto Gassmann; Anthony Essex; Jia-Sheng Hu; Paul S. Maddox; Fumio Motegi; Asako Sugimoto; Sean M. O’Rourke; Bruce Bowerman; Ian X. McLeod; John R. Yates; Karen Oegema; Iain M. Cheeseman; Arshad Desai

Chromosome segregation requires stable bipolar attachments of spindle microtubules to kinetochores. The dynein/dynactin motor complex localizes transiently to kinetochores and is implicated in chromosome segregation, but its role remains poorly understood. Here, we use the Caenorhabditis elegans embryo to investigate the function of kinetochore dynein by analyzing the Rod/Zwilch/Zw10 (RZZ) complex and the associated coiled-coil protein SPDL-1. Both components are essential for Mad2 targeting to kinetochores and spindle checkpoint activation. RZZ complex inhibition, which abolishes both SPDL-1 and dynein/dynactin targeting to kinetochores, slows but does not prevent the formation of load-bearing kinetochore-microtubule attachments and reduces the fidelity of chromosome segregation. Surprisingly, inhibition of SPDL-1, which abolishes dynein/dynactin targeting to kinetochores without perturbing RZZ complex localization, prevents the formation of load-bearing attachments during most of prometaphase and results in extensive chromosome missegregation. Coinhibition of SPDL-1 along with the RZZ complex reduces the phenotypic severity to that observed following RZZ complex inhibition alone. We propose that the RZZ complex can inhibit the formation of load-bearing attachments and that this activity of the RZZ complex is normally controlled by dynein/dynactin localized via SPDL-1. This mechanism could coordinate the hand-off from initial weak dynein-mediated lateral attachments, which help orient kinetochores and enhance their ability to capture microtubules, to strong end-coupled attachments that drive chromosome segregation.

Collaboration


Dive into the Paul S. Maddox's collaboration.

Top Co-Authors

Avatar

E. D. Salmon

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kerry Bloom

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Arshad Desai

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Amy Shaub Maddox

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Elaine Yeh

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Karen Oegema

Ludwig Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sidney L. Shaw

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge