Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul S. Masters is active.

Publication


Featured researches published by Paul S. Masters.


Advances in Virus Research | 2006

The Molecular Biology of Coronaviruses

Paul S. Masters

Abstract Coronaviruses are large, enveloped RNA viruses of both medical and veterinary importance. Interest in this viral family has intensified in the past few years as a result of the identification of a newly emerged coronavirus as the causative agent of severe acute respiratory syndrome (SARS). At the molecular level, coronaviruses employ a variety of unusual strategies to accomplish a complex program of gene expression. Coronavirus replication entails ribosome frameshifting during genome translation, the synthesis of both genomic and multiple subgenomic RNA species, and the assembly of progeny virions by a pathway that is unique among enveloped RNA viruses. Progress in the investigation of these processes has been enhanced by the development of reverse genetic systems, an advance that was heretofore obstructed by the enormous size of the coronavirus genome. This review summarizes both classical and contemporary discoveries in the study of the molecular biology of these infectious agents, with particular emphasis on the nature and recognition of viral receptors, viral RNA synthesis, and the molecular interactions governing virion assembly.


Journal of Virology | 2000

Retargeting of Coronavirus by Substitution of the Spike Glycoprotein Ectodomain: Crossing the Host Cell Species Barrier

Lili Kuo; Gert-Jan Godeke; Martin J. B. Raamsman; Paul S. Masters; Peter J. M. Rottier

ABSTRACT Coronaviruses generally have a narrow host range, infecting one or just a few species. Using targeted RNA recombination, we constructed a mutant of the coronavirus mouse hepatitis virus (MHV) in which the ectodomain of the spike glycoprotein (S) was replaced with the highly divergent ectodomain of the S protein of feline infectious peritonitis virus. The resulting chimeric virus, designated fMHV, acquired the ability to infect feline cells and simultaneously lost the ability to infect murine cells in tissue culture. This reciprocal switch of species specificity strongly supports the notion that coronavirus host cell range is determined primarily at the level of interactions between the S protein and the virus receptor. The isolation of fMHV allowed the localization of the region responsible for S protein incorporation into virions to the carboxy-terminal 64 of the 1,324 residues of this protein. This establishes a basis for further definition of elements involved in virion assembly. In addition, fMHV is potentially the ideal recipient virus for carrying out reverse genetics of MHV by targeted RNA recombination, since it presents the possibility of selecting recombinants, no matter how defective, that have regained the ability to replicate in murine cells.


Virology | 2002

The group-specific murine coronavirus genes are not essential, but their deletion, by reverse genetics, is attenuating in the natural host

Cornelis A. M. de Haan; Paul S. Masters; Xiaolan Shen; Susan R. Weiss; Peter J. M. Rottier

Abstract In addition to a characteristic set of essential genes coronaviruses contain several so-called group-specific genes. These genes differ distinctly among the three coronavirus groups and are specific for each group. While the essential genes encode replication and structural functions, hardly anything is known about the products and functions of the group-specific genes. As a first step to elucidate their significance, we deleted the group-specific genes from the group 2 mouse hepatitis virus (MHV) genome via a novel targeted recombination system based on host switching (L. Kuo, G. J.Godeke, M. J. Raamsman, P. S. Masters, and P. J. M. Rottier, 2000, J. Virol. 74, 1393–1406). Thus, we obtained recombinant viruses from which the two clusters of group-specific genes were deleted either separately or in combination in a controlled genetic background. As all recombinant deletion mutant viruses appeared to be viable, we conclude that the MHV group-specific genes are nonessential, accessory genes. Importantly, all deletion mutant viruses were attenuated when inoculated into their natural host, the mouse. Therefore, deletion of the coronavirus group-specific genes seems to provide an attractive approach to generate attenuated live coronavirus vaccines.


Journal of Virology | 2003

The Small Envelope Protein E Is Not Essential for Murine Coronavirus Replication

Lili Kuo; Paul S. Masters

ABSTRACT The importance of the small envelope (E) protein in the assembly of coronaviruses has been demonstrated in several studies. While its precise function is not clearly defined, E is a pivotal player in the morphogenesis of the virion envelope. Expression of the E protein alone results in its incorporation into vesicles that are released from cells, and the coexpression of the E protein with the membrane protein M leads to the assembly of coronavirus-like particles. We have previously generated E gene mutants of mouse hepatitis virus (MHV) that had marked defects in viral growth and produced virions that were aberrantly assembled in comparison to wild-type virions. We have now been able to obtain a viable MHV mutant in which the entire E gene, as well as the nonessential upstream genes 4 and 5a, has been deleted. This mutant (ΔE) was obtained by a targeted RNA recombination method that makes use of a powerful host range-based selection system. The ΔE mutant produces tiny plaques with an unusual morphology compared to plaques formed by wild-type MHV. Despite its low growth rate and low infectious titer, the ΔE mutant is genetically stable, showing no detectable phenotypic changes after several passages. The properties of this mutant provide further support for the importance of E protein in MHV replication, but surprisingly, they also show that E protein is not essential.


Journal of Virology | 2002

Genetic Evidence for a Structural Interaction between the Carboxy Termini of the Membrane and Nucleocapsid Proteins of Mouse Hepatitis Virus

Lili Kuo; Paul S. Masters

ABSTRACT The coronavirus membrane (M) protein is the most abundant virion protein and the key component in viral assembly and morphogenesis. The M protein of mouse hepatitis virus (MHV) is an integral membrane protein with a short ectodomain, three transmembrane segments, and a large carboxy-terminal endodomain facing the interior of the viral envelope. The carboxy terminus of MHV M has previously been shown to be extremely sensitive to mutation, both in a virus-like particle expression system and in the intact virion. We have constructed a mutant, MΔ2, containing a two-amino-acid truncation of the M protein that was previously thought to be lethal. This mutant was isolated by means of targeted RNA recombination with a powerful host range-based selection allowed by the interspecies chimeric virus fMHV (MHV containing the ectodomain of the feline infectious peritonitis virus S protein). Analysis of multiple second-site revertants of the MΔ2 mutant has revealed changes in regions of both the M protein and the nucleocapsid (N) protein that can compensate for the loss of the last two residues of the M protein. Our data thus provide the first genetic evidence for a structural interaction between the carboxy termini of the M and N proteins of MHV. In addition, this work demonstrates the efficacy of targeted recombination with fMHV for the systematic genetic analysis of coronavirus structural protein interactions.


Virology | 1990

Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein

Monica M. Parker; Paul S. Masters

Abstract To obtain information about the structure and evolution of the nucleocapsid (N) protein of the coronavirus mouse hepatitis virus (MHV), we determined the entire nucleotide sequences of the N genes of MHV-A59, MHV-3, MHV-S, and MHV-1 from cDNA clones. At the nucleotide level, the N gene sequences of these viral strains, and that of MHV-JHM, were more than 92% conserved overall. Even higher nucleotide sequence identity was found in the 3′ untranslated regions (3′ UTRs) of the five strains, which may reflect the role of the 3′ UTR in negative-strand RNA synthesis. All five N genes were found to encode markedly basic proteins of 454 or 455 residues having at least 94% sequence identity in pairwise comparisons. However, amino acid sequence divergences were found to be clustered in two short segments of N, putative spacer regions that, together, constituted only 11% of the molecule. Thus, the data suggest that the MHV N protein is composed of three highly conserved structural domains connected to each other by regions that have much less constraint on their amino acid sequences. The first two conserved domains contain most of the excess of basic amino acid residues; by contrast, the carboxy-terminal domain is acidic. Finally, we noted that four of the five N genes contain an internal open reading frame that potentially encodes a protein of 207 amino acids having a large proportion of basic and hydrophobic residues.


Journal of Virology | 2004

Characterization of the RNA Components of a Putative Molecular Switch in the 3′ Untranslated Region of the Murine Coronavirus Genome

Scott J. Goebel; Bilan Hsue; Todd F. Dombrowski; Paul S. Masters

ABSTRACT RNA virus genomes contain cis-acting sequence and structural elements that participate in viral replication. We previously identified a bulged stem-loop secondary structure at the upstream end of the 3′ untranslated region (3′ UTR) of the genome of the coronavirus mouse hepatitis virus (MHV). This element, beginning immediately downstream of the nucleocapsid gene stop codon, was shown to be essential for virus replication. Other investigators discovered an adjacent downstream pseudoknot in the 3′ UTR of the closely related bovine coronavirus (BCoV). This pseudoknot was also shown to be essential for replication, and it has a conserved counterpart in every group 1 and group 2 coronavirus. In MHV and BCoV, the bulged stem-loop and pseudoknot are, in part, mutually exclusive, because of the overlap of the last segment of the stem-loop and stem 1 of the pseudoknot. This led us to hypothesize that they form a molecular switch, possibly regulating a transition occurring during viral RNA synthesis. We have now performed an extensive genetic analysis of the two components of this proposed switch. Our results define essential and nonessential components of these structures and establish the limits to which essential parts of each element can be destabilized prior to loss of function. Most notably, we have confirmed the interrelationship of the two putative switch elements. Additionally, we have identified a pseudoknot loop insertion mutation that appears to point to a genetic interaction between the pseudoknot and a distant region of the genome.


Journal of Virology | 2000

Characterization of an Essential RNA Secondary Structure in the 3′ Untranslated Region of the Murine Coronavirus Genome

Bilan Hsue; Toinette Hartshorne; Paul S. Masters

ABSTRACT We have previously identified a functionally essential bulged stem-loop in the 3′ untranslated region of the positive-stranded RNA genome of mouse hepatitis virus. This 68-nucleotide structure is composed of six stem segments interrupted by five bulges, and its structure, but not its primary sequence, is entirely conserved in the related bovine coronavirus. The functional importance of individual stem segments of this stem-loop was characterized by genetic analysis using targeted RNA recombination. We also examined the effects of stem segment mutations on the replication of mouse hepatitis virus defective interfering RNAs. These studies were complemented by enzymatic and chemical probing of the stem-loop. Taken together, our results confirmed most of the previously proposed structure, but they revealed that the terminal loop and an internal loop are larger than originally thought. Three of the stem segments were found to be essential for viral replication. Further, our results suggest that the stem segment at the base of the stem-loop is an alternative base-pairing structure for part of a downstream, and partially overlapping, RNA pseudoknot that has recently been shown to be necessary for bovine coronavirus replication.


Journal of Virology | 2004

CXC Chemokine Ligand 10 Controls Viral Infection in the Central Nervous System: Evidence for a Role in Innate Immune Response through Recruitment and Activation of Natural Killer Cells

Matthew J. Trifilo; Cynthia Montalto-Morrison; Linda N. Stiles; Kelley R. Hurst; Jenny L. Hardison; Jerry E. Manning; Paul S. Masters; Thomas E. Lane

ABSTRACT How chemokines shape the immune response to viral infection of the central nervous system (CNS) has largely been considered within the context of recruitment and activation of antigen-specific lymphocytes. However, chemokines are expressed early following viral infection, suggesting an important role in coordinating innate immune responses. Herein, we evaluated the contributions of CXC chemokine ligand 10 (CXCL10) in promoting innate defense mechanisms following coronavirus infection of the CNS. Intracerebral infection of RAG1−/− mice with a recombinant CXCL10-expressing murine coronavirus (mouse hepatitis virus) resulted in protection from disease and increased survival that correlated with a significant increase in recruitment and activation of natural killer (NK) cells within the CNS. Accumulation of NK cells resulted in a reduction in viral titers that was dependent on gamma interferon secretion. These results indicate that CXCL10 expression plays a pivotal role in defense following coronavirus infection of the CNS by enhancing innate immune responses.


Journal of Biological Chemistry | 1998

Bacterial Expression and Characterization of the Mitochondrial Outer Membrane Channel EFFECTS OF N-TERMINAL MODIFICATIONS

Daniel A. Koppel; Kathleen W. Kinnally; Paul S. Masters; Michael Forte; Elizabeth Blachly-Dyson; Carmen A. Mannella

Several forms of the voltage-dependent anion-selective channel (VDAC) have been expressed at high yield in Escherichia coli. Full-length constructs of the proteins of Neurospora crassa andSaccharomyces cerevisiae (ncVDAC and scVDAC) have been made with 20-residue-long, thrombin-cleavable, His6-containing N-terminal extensions. ncVDAC purified from bacteria or mitochondria displays a far-UV CD spectrum (in 1% lauryl dimethylamine oxide at pH 6–8) similar to that of bacterial porins, indicating extensive β-sheet structure. Under the same conditions, the CD spectrum of bacterially expressed scVDAC indicates lower β-sheet content, albeit higher than that of mitochondrial scVDAC under the same conditions. In phospholipid bilayers, the bacterially expressed proteins (with or without N-terminal extensions) form typical VDAC-like channels with stable, large conductance open states (4–4.5 nanosiemens in 1m KCl) and voltage-dependent transitions to a predominant substate (about 2 nanosiemens). A variant of scVDAC missing the first eight residues and having no N-terminal extension also has been expressed in E. coli. The truncated protein has a CD spectrum similar to that of mitochondrial scVDAC, but its channel activity is abnormal, exhibiting an unstable open state and rapid transitions between multiple subconductance levels.

Collaboration


Dive into the Paul S. Masters's collaboration.

Top Co-Authors

Avatar

Lili Kuo

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Cheri A. Koetzner

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bilan Hsue

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Françoise Fischer

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar

Monica M. Parker

New York State Department of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge