Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul S. Schmidt is active.

Publication


Featured researches published by Paul S. Schmidt.


Evolution | 2005

GEOGRAPHIC VARIATION IN DIAPAUSE INCIDENCE, LIFE-HISTORY TRAITS, AND CLIMATIC ADAPTATION IN DROSOPHILA MELANOGASTER

Paul S. Schmidt; Luciano M. Matzkin; Michael Ippolito; Walter F. Eanes

Abstract In Drosophila melanogaster, exposure of females to low temperature and shortened photoperiod can induce the expression of reproductive quiescence or diapause. Diapause expression is highly variable within and among natural populations and has significant effects on life‐history profiles, including patterns of longevity, fecundity, and stress resistance. We hypothesized that if diapause expression is associated with overwintering mechanisms and adaptation to temperate environments, the frequency of diapause incidence would exhibit a latitudinal cline among natural populations. Because stress resistance and reproductive traits are also clinal in this species, we also examined how patterns of fecundity and longevity varied with geography and how stress resistance and associated traits differed constitutively between diapause and nondiapause lines. Diapause incidence was shown to vary predictably with latitude, ranging from 35% to 90% among natural populations in the eastern United States Survivorship under starvation stress differed between diapause and nondiapause lines; diapause phenotypes were also distinct for total body triglyceride content and the developmental distribution of oocytes in the ovary following stress exposure. Patterns of longevity, fecundity, and ovariole number also varied with geography. The data suggest that, for North American populations, diapause expression is functionally associated with overwintering mechanisms and may be an integral life‐history component in natural populations.


Molecular Ecology | 2012

Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America

Daniel K. Fabian; Martin Kapun; Viola Nolte; Robert Kofler; Paul S. Schmidt; Christian Schlötterer; Thomas Flatt

Understanding the genetic underpinnings of adaptive change is a fundamental but largely unresolved problem in evolutionary biology. Drosophila melanogaster, an ancestrally tropical insect that has spread to temperate regions and become cosmopolitan, offers a powerful opportunity for identifying the molecular polymorphisms underlying clinal adaptation. Here, we use genome‐wide next‐generation sequencing of DNA pools (‘pool‐seq’) from three populations collected along the North American east coast to examine patterns of latitudinal differentiation. Comparing the genomes of these populations is particularly interesting since they exhibit clinal variation in a number of important life history traits. We find extensive latitudinal differentiation, with many of the most strongly differentiated genes involved in major functional pathways such as the insulin/TOR, ecdysone, torso, EGFR, TGFβ/BMP, JAK/STAT, immunity and circadian rhythm pathways. We observe particularly strong differentiation on chromosome 3R, especially within the cosmopolitan inversion In(3R)Payne, which contains a large number of clinally varying genes. While much of the differentiation might be driven by clinal differences in the frequency of In(3R)P, we also identify genes that are likely independent of this inversion. Our results provide genome‐wide evidence consistent with pervasive spatially variable selection acting on numerous loci and pathways along the well‐known North American cline, with many candidates implicated in life history regulation and exhibiting parallel differentiation along the previously investigated Australian cline.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An amino acid polymorphism in the couch potato gene forms the basis for climatic adaptation in Drosophila melanogaster

Paul S. Schmidt; Chen-Tseh Zhu; Jayatri Das; Mariska Batavia; Li Yang; Walter F. Eanes

Diapause is the classic adaptation to seasonality in arthropods, and its expression can result in extreme lifespan extension as well as enhanced resistance to environmental challenges. Little is known about the underlying evolutionary genetic architecture of diapause in any organism. Drosophila melanogaster exhibits a reproductive diapause that is variable within and among populations; the incidence of diapause increases with more temperate climates and has significant pleiotropic effects on a number of life history traits. Using quantitative trait mapping, we identified the RNA-binding protein encoding gene couch potato (cpo) as a major genetic locus determining diapause phenotype in D. melanogaster and independently confirmed this ability to impact diapause expression through genetic complementation mapping. By sequencing this gene in samples from natural populations we demonstrated through linkage association that variation for the diapause phenotype is caused by a single Lys/Ile substitution in one of the six cpo transcripts. Complementation analyses confirmed that the identified amino acid variants are functionally distinct with respect to diapause expression, and the polymorphism also shows geographic variation that closely mirrors the known latitudinal cline in diapause incidence. Our results suggest that a naturally occurring amino acid polymorphism results in the variable expression of a diapause syndrome that is associated with the seasonal persistence of this model organism in temperate habitats.


Ecology | 2008

Ecological genetics in the North Atlantic: environmental gradients and adaptation at specific loci.

Paul S. Schmidt; Ester A. Serrão; Gareth A. Pearson; Cynthia Riginos; Paul D. Rawson; Thomas J. Hilbish; Susan H. Brawley; Geoffrey C. Trussell; Emily Carrington; David S. Wethey; J. Grahame; François Bonhomme; David M. Rand

The North Atlantic intertidal community provides a rich set of organismal and environmental material for the study of ecological genetics. Clearly defined environmental gradients exist at multiple spatial scales: there are broad latitudinal trends in temperature, meso-scale changes in salinity along estuaries, and smaller scale gradients in desiccation and temperature spanning the intertidal range. The geology and geography of the American and European coasts provide natural replication of these gradients, allowing for population genetic analyses of parallel adaptation to environmental stress and heterogeneity. Statistical methods have been developed that provide genomic neutrality tests of population differentiation and aid in the process of candidate gene identification. In this paper, we review studies of marine organisms that illustrate associations between an environmental gradient and specific genetic markers. Such highly differentiated markers become candidate genes for adaptation to the environmental factors in question, but the functional significance of genetic variants must be comprehensively evaluated. We present a set of predictions about locus-specific selection across latitudinal, estuarine, and intertidal gradients that are likely to exist in the North Atlantic. We further present new data and analyses that support and contradict these simple selection models. Some taxa show pronounced clinal variation at certain loci against a background of mild clinal variation at many loci. These cases illustrate the procedures necessary for distinguishing selection driven by internal genomic vs. external environmental factors. We suggest that the North Atlantic intertidal community provides a model system for identifying genes that matter in ecology due to the clarity of the environmental stresses and an extensive experimental literature on ecological function. While these organisms are typically poor genetic and genomic models, advances in comparative genomics have provided access to molecular tools that can now be applied to taxa with well-defined ecologies. As many of the organisms we discuss have tight physiological limits driven by climatic factors, this synthesis of molecular population genetics with marine ecology could provide a sensitive means of assessing evolutionary responses to climate change.


Evolution | 2008

Reproductive Diapause and Life-History Clines in North American Populations of Drosophila melanogaster

Paul S. Schmidt; Annalise B. Paaby

Abstract Latitudinal clines are widespread in Drosophila melanogaster, and many have been interpreted as adaptive responses to climatic variation. However, the selective mechanisms generating many such patterns remain unresolved, and there is relatively little information regarding how basic life-history components such as fecundity, life span and mortality rates vary across environmental gradients. Here, it is shown that four life-history traits vary predictably with geographic origin of populations sampled along the latitudinal gradient in the eastern United States. Although such patterns are indicative of selection, they cannot distinguish between the direct action of selection on the traits in question or indirect selection by means of underlying genetic correlations. When independent suites of traits covary with geography, it is therefore critical to separate the widespread effects of population source from variation specifically for the traits under investigation. One trait that is associated with variation in life histories and also varies with latitude is the propensity to express reproductive diapause; diapause expression has been hypothesized as a mechanism by which D. melanogaster adults overwinter, and as such may be subject to strong selection in temperate habitats. In this study, recently derived isofemale lines were used to assess the relative contributions of population source and diapause genotype in generating the observed variance for life histories. It is shown that although life span, fecundity and mortality rates varied predictably with geography, diapause genotype explained the majority of the variance for these traits in the sampled populations. Both heat and cold shock resistance were also observed to vary predictably with latitude for the sampled populations. Cold shock tolerance varied between diapause genotypes and the magnitude of this difference varied with geography, whereas heat shock tolerance was affected solely by geographic origin of the populations. These data suggest that a subset of life-history parameters is significantly influenced by the genetic variance for diapause expression in natural populations, and that the observed variance for longevity and fecundity profiles may reflect indirect action of selection on diapause and other correlated traits.


Evolution | 1999

INTERTIDAL MICROHABITAT AND SELECTION AT MPI: INTERLOCUS CONTRASTS IN THE NORTHERN ACORN BARNACLE, SEMIBALANUS BALANOIDES

Paul S. Schmidt; David M. Rand

Barnacles were sampled from various microhabitats in the rocky intertidal at multiple sites in two years. At sites in which there were large differences among microhabitats in temperature profiles, Mpi genotype frequencies were consistently and significantly different. Genotype frequencies for another allozyme locus (Gpi) as well as a DNA marker shown to be neutral (the mtDNA control region) were statistically homogeneous among thermal microhabitats at all sites in both years. The data indicate that temperature and/or desiccation mediated selection is operating at Mpi or a linked locus and that Mpi genotypes experience differential mortality in the various habitat types. If the relative fitness of genotypes is dependent on habitat type, the Mpi polymorphism may be actively maintained by a Levene model of balancing selection (Levene 1953). Because barnacle larvae are produced in abundance each year and spend five to eight weeks dispersing in the water column, there is little opportunity for the accumulation of adaptive divergence over the environmental grain size relevant in intertidal habitats. The Mpi polymorphism may be an important component of a suite of traits involved in the adaptation of barnacles to heterogeneous environments. Due to the relatively high concentration of mannose in a variety of algal groups, the metabolism of mannose may substantially affect individual performance and fitness in this and other species that feed on algae and phytoplankton. Because the Mpi locus is one of the most strongly polymorphic in marine organisms, these findings may be relevant for a diversity of other such species.


Evolution | 2001

ADAPTIVE MAINTENANCE OF GENETIC POLYMORPHISM IN AN INTERTIDAL BARNACLE: HABITAT- AND LIFE-STAGE-SPECIFIC SURVIVORSHIP OF MPI GENOTYPES

Paul S. Schmidt; David M. Rand

Abstract.— In the northern acorn barnacle, Semibalanus balanoides, genotype frequencies of three genetic markers were tracked over time in four types of intertidal habitats. These habitats were selected to represent natural variation in several environmental parameters, specifically the degree of physical stress experienced by barnacles. Frequencies for one allozyme locus (Gpi) and a presumably neutral mtDNA marker were homogeneous among habitats in each temporal sample. Similarly, no temporal stratification in genotype frequencies was evident across the five sampling intervals: from planktonic larvae sampled in March to juveniles collected at the end of June. In contrast to the Gpi and mtDNA loci, Mpi genotypes significantly changed in frequency in two habitats in the high intertidal zone. On exposed substrate, the Mpi‐FF homozygote increased in frequency, whereas the alternative homozygote, Mpi‐SS, significantly decreased in frequency. Barnacles that were protected from environmental stress at high intertidal heights by the Ascophyllum nodosum algal canopy demonstrated the opposite pattern. In both habitats, the change in frequency of the heterozygote was intermediate to that of the homozygous genotypes. Furthermore, these patterns of genotype‐by‐environment association reflected a pulse of genotype‐specific mortality that occurred over a two‐week interval subsequent to metamorphosis from the larval to the adult form. These data indicate that each Mpi homozygote is the highest fitness genotype in some portion of the intertidal environment. Using the Levene (1953) model to evaluate the spatial variation in genotypic fitness, the stable maintenance of the Mpi polymorphism is predicted under certain subsets of conditions. Environmental heterogeneity in the intertidal zone translates to spatial variation in selection pressures, which may result in the active maintenance of the Mpi polymorphism in this species.


Molecular Ecology | 2010

Identification of a candidate adaptive polymorphism for Drosophila life history by parallel independent clines on two continents

Annalise B. Paaby; Mark J. Blacket; Ary A. Hoffmann; Paul S. Schmidt

Life history traits are critical components of fitness and frequently reflect adaptive responses to environmental pressures. However, few genes that contribute to natural life history variation have been identified. Insulin signalling mediates the determination of life history traits in many organisms, and single gene manipulation in Drosophila melanogaster suggests that individual genes in the pathway have the potential to produce major effects on these quantitative traits. We evaluated allelic variation at two insulin signalling genes, the Insulin‐like Receptor (InR) and its substrate, chico, in natural populations of D. melanogaster. We found different patterns of variation: InR shows evidence of positive selection and clines in allele frequency across latitude; chico exhibits neutral patterns of evolution. The clinal patterns at InR are replicated between North America and Australia, showing striking similarity in the distribution of specific alleles and the rate at which allele frequencies change across latitude. Moreover, we identified a polymorphism at InR that appears to be functionally significant and consistent with hypothetical patterns of selection across geography. This polymorphism provides new characterization of genic regions of functionality within InR, and is likely a component in a suite of genes and traits that respond adaptively to climatic variation.


Fly | 2009

Dissecting the genetics of longevity in Drosophila melanogaster

Annalise B. Paaby; Paul S. Schmidt

Drosophila melanogaster has been an historically important system for investigating the genetic basis of longevity, and will continue to be valuable as new technologies permit genomic explorations into the biology of aging. The utility of D. melanogaster resides in two resources: its powerful genetic tools as a model system, and a natural ecology that provides substantial genetic variation across significant environmental heterogeneity. Here we provide a review of the genetics of longevity in D. melanogaster, in which we describe the characterization of individual aging genes, the complexity of the genetic architecture of this quantitative trait, and the evaluation of natural genetic variation in the evolution of life histories.


Evolution | 2005

GENETIC VARIANCE FOR DIAPAUSE EXPRESSION AND ASSOCIATED LIFE HISTORIES IN DROSOPHILA MELANOGASTER

Paul S. Schmidt; Annalise B. Paaby; M. Shane Heschel

Abstract The dipteran Drosophila melanogaster can express a form of reproductive quiescence or diapause when exposed to low temperature and shortened photoperiod. Among natural populations in the eastern United States, the frequency of lines that express reproductive diapause in the laboratory varies substantially and predictably with latitudinal origin. The goals of the present study were twofold: (1) to examine the impact of genetic variance for diapause expression on multiple traits associated with organismal fitness; and (2) to evaluate the potential for fitness trade‐offs between diapause and nondiapause phenotypes that may result in the observed cline. Even prior to diapause entry or expression, inbred lines that express and do not express reproductive diapause in laboratory assays were constitutively distinct for life span, age‐specific mortality rates, fecundity profiles, resistance to cold and starvation stress, lipid content, development time, and egg‐to‐adult viability. Furthermore, estimates of genetic correlations based on line means revealed significant differentiation for genetic variance/covariance matrices between diapause and nondiapause lines. The data indicate the potential for life‐history trade‐offs associated with variation for the diapause phenotype. The observed cline in diapause incidence in the eastern United States may be generated by these tradeoffs and the associated spatial and/or temporal variation in relative fitness of these two phenotypes in natural populations.

Collaboration


Dive into the Paul S. Schmidt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily L. Behrman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annalise B. Paaby

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge