Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Schaffer is active.

Publication


Featured researches published by Paul Schaffer.


Nuclear Medicine and Biology | 2011

Cyclotron production of 99mTc: Experimental measurement of the 100Mo(p,x)99Mo, 99mTc and 99gTc excitation functions from 8 to 18 MeV

Katherine Gagnon; Francois Benard; Michael Kovacs; Thomas J. Ruth; Paul Schaffer; John S. Wilson; Steve McQuarrie

INTRODUCTION The cyclotron-based (100)Mo(p,2n)(99m)Tc transformation has been proposed as a viable alternative to the reactor based (235)U(n,f)(99)Mo→(99m)Tc strategy for production of (99m)Tc. Despite efforts to theoretically model the amount of ground-state (99g)Tc present at end of bombardment for the (p,2n) reaction, experimental validation has yet to be performed. The co-production of (99g)Tc may have important implications in both the subsequent radiopharmaceutical chemistry and patient dosimetry upon injection. METHODS To determine the extent of (99g)Tc co-production, we have experimentally measured the (100)Mo(p,x)(99)Mo, (99m)Tc, and (99g)Tc excitation functions in the 8-18 MeV range using a combination of natural abundance and 97.42% enriched (100)Mo foils along with γ-ray spectrometry and ICP-MS. Although the excitation functions for production of (99)Mo and (99m)Tc have been presented previously in the literature, to the best of our knowledge, this work presents the first experimental evaluation of the (100)Mo(p,2n)(99g)Tc excitation function. RESULTS From the experimental cross-section measurements, the (99m)Tc production yields and (99m)Tc/(99m+g)Tc nuclei ratio were calculated for various thick target irradiation conditions. Results suggest that TBq quantities of (99m)Tc can be achieved with a (99m)Tc/(99m+g)Tc nuclei ratio that is on par with the current (99)Mo/(99m)Tc generator standard eluted at a 24-h frequency. CONCLUSION These findings suggest that the cyclotron production of (99m)Tc may be a feasible alternative to the current reactor-based production strategy.


Angewandte Chemie | 2013

Stoichiometric leverage: rapid 18F-aryltrifluoroborate radiosynthesis at high specific activity for click conjugation.

Zhibo Liu; Ying Li; Jerome Lozada; Paul Schaffer; Michael J. Adam; Thomas J. Ruth; David M. Perrin

,values which are higher than those of most other radiotracers.Herein,weshowthefeasibilityofthismethodintermsofone-step labeling and click conjugation, along with experimentalproof of such high SAs.Propargylated arylborimidine 1 was synthesized accord-ing to previous reports as a shelf-stable B(dan)-protected


Nuclear Medicine and Biology | 2012

An automated module for the separation and purification of cyclotron-produced 99mTcO4-.

Thomas Morley; Maurice G. Dodd; Katherine Gagnon; Vicky Hanemaayer; John D. Wilson; Stephen A. McQuarrie; Wade English; Thomas J. Ruth; Francois Benard; Paul Schaffer

INTRODUCTION The shortage of reactor-produced molybdenum-99 ((99)Mo, t(½)=66 h) has renewed interest in alternative production methods of its daughter isotope, technetium-99m ((99m)Tc, t(½)=6.02 h). While adsorption chromatography serves as a mechanism for selective elution of sodium pertechnetate from technetium generators, this method of purification is not sufficient for many alternative production methods. Several ion-separation/solid phase extraction chromatography methods are known, yet none have been demonstrated on cyclotron-produced [(99m)Tc]TcO(4)(-). Herein we describe the design, manufacture and optimization of a remotely operated module for the purification of sodium pertechnetate from a bulk solution of molybdate. METHODS The automated purification module was designed to separate [(99m)Tc]TcO(4)(-) using either Dowex 1x8 or an Aqueous Biphasic Extraction Chromatography (ABEC) resin. (100)Mo composite targets were irradiated with 18.5 MeV protons for 10 μA·h using an ASCI TR19 cyclotron. Once purified, the radiopharmaceutical quality of (99m)TcO(4)(-) isolated from each process (Dowex and/or ABEC) was established by assaying for molybdate breakthrough, alumina levels and, in the case of the Dowex approach, residual organics. RESULTS The separation processes are efficient (75% for Dowex, 90% for ABEC) and complete in less than 30 min. Overall, up to 2.1 GBq of (99m)Tc was produced using the (100)Mo(p,2n)(99m)Tc transformation, processed using the separation module and subjected to a detailed chemical and radionuclidic analysis. Due to its expense and limited availability, (100)MoO(4)(2-) was recovered in >90% yield using a precipitation/filtration/lyophilization approach. CONCLUSIONS Na[(99m)Tc]TcO(4) was produced using a medical cyclotron, recovered using an automated purification module and found to exceed all established quality control parameters.


The Journal of Nuclear Medicine | 2014

Implementation of Multi-Curie Production of 99mTc by Conventional Medical Cyclotrons

Francois Benard; Kenneth R. Buckley; Thomas J. Ruth; Stefan K. Zeisler; Julius Klug; Victoire Hanemaayer; Milan Vuckovic; Xinchi Hou; Anna Celler; Jean-Pierre Appiah; John F. Valliant; Michael Kovacs; Paul Schaffer

99mTc is currently produced by an aging fleet of nuclear reactors, which require enriched uranium and generate nuclear waste. We report the development of a comprehensive solution to produce 99mTc in sufficient quantities to supply a large urban area using a single medical cyclotron. Methods: A new target system was designed for 99mTc production. Target plates made of tantalum were coated with a layer of 100Mo by electrophoretic deposition followed by high-temperature sintering. The targets were irradiated with 18-MeV protons for up to 6 h, using a medical cyclotron. The targets were automatically retrieved and dissolved in 30% H2O2. 99mTc was purified by solid-phase extraction or biphasic exchange chromatography. Results: Between 1.04 and 1.5 g of 100Mo were deposited on the tantalum plates. After high-temperature sintering, the 100Mo formed a hard, adherent layer that bonded well with the backing surface. The targets were irradiated for 1–6.9 h at 20–240 μA of proton beam current, producing up to 348 GBq (9.4 Ci) of 99mTc. The resulting pertechnetate passed all standard quality control procedures and could be used to reconstitute typical anionic, cationic, and neutral technetium radiopharmaceutical kits. Conclusion: The direct production of 99mTc via proton bombardment of 100Mo can be practically achieved in high yields using conventional medical cyclotrons. With some modifications of existing cyclotron infrastructure, this approach can be used to implement a decentralized medical isotope production model. This method eliminates the need for enriched uranium and the radioactive waste associated with the processing of uranium targets.


MedChemComm | 2011

Towards kit-like 18F-labeling of marimastat, a noncovalent inhibitor drug for in vivo PET imaging cancer associated matrix metalloproteases

Ying Li; Richard Ting; Curtis Harwig; Ulrich auf dem Keller; Caroline L. Bellac; Philipp F. Lange; James Inkster; Paul Schaffer; Michael J. Adam; Thomas J. Ruth; Christopher M. Overall; David M. Perrin

Marimastat, a clinically trialed drug developed to treat breast cancer by inhibiting cancer-associated matrix metalloproteases (MMPs), was linked to an aryl boronic ester for single-step [18F]-aqueous fluoride capture and the labeled product revealed tumor associated MMP activity in vivo. Herein, we report important radiosynthetic attributes for labeling marimastat that enabled the first PET images of breast cancer-associated matrix metalloproteases in a syngenic murine model. The advantages of this method include one-step post synthetic labeling in less than one hour at ambient temperature, the ability to work in aqueous media without drying the 18F-fluoride, observation of high radiochemical purity, and the potential for tripling the specific activity of the fluoride used in labeling. Using low levels of activity e.g. 60 mCi in low volumes this method affords reasonable yields of labeled marimastat with decay-corrected specific activities of 0.39 and 0.75 Ci/μmol, and real specific activities of 0.16 and 0.39 Ci/μmol. Current limitations of this method along with anticipated improvements are discussed.


Nuclear Medicine and Biology | 2014

44gSc production using a water target on a 13 MeV cyclotron

Cornelia Hoehr; Elisabeth Oehlke; Francois Benard; Chris Jaeil Lee; Xinchi Hou; Brian Badesso; Simon Ferguson; Qing Miao; Hua Yang; Ken Buckley; Victoire Hanemaayer; Stefan K. Zeisler; Thomas J. Ruth; Anna Celler; Paul Schaffer

INTRODUCTION Access to promising radiometals as isotopes for novel molecular imaging agents requires that they are routinely available and inexpensive to obtain. Proximity to a cyclotron center outfitted with solid target hardware, or to an isotope generator for the metal of interest is necessary, both of which can introduce significant hurdles in development of less common isotopes. Herein, we describe the production of ⁴⁴Sc (t1/2=3.97 h, Eavg,β⁺=1.47MeV, branching ratio=94.27%) in a solution target and an automated loading system which allows a quick turn-around between different radiometallic isotopes and therefore greatly improves their availability for tracer development. Experimental yields are compared to theoretical calculations. METHODS Solutions containing a high concentration (1.44-1.55g/mL) of natural-abundance calcium nitrate tetrahydrate (Ca(NO₃)2·4 H₂O) were irradiated on a 13MeV proton-beam cyclotron using a standard liquid target. (44g)Sc was produced via the ⁴⁴Ca(p,n)(44g)Sc reaction. RESULTS (44g)Sc was produced for the first time in a solution target with yields sufficient for early radiochemical studies. Saturation yields of up to 4.6 ± 0.3 MBq/μA were achieved using 7.6 ± 0.3 μA proton beams for 60.0 ± 0.2 minutes (number of runs n=3). Experimental data and calculation results are in fair agreement. Scandium was isolated from the target mixture via solid-phase extraction with 88 ± 6% (n=5) efficiency and successfully used for radiolabelling experiments. The demonstration of the production of ⁴⁴Sc in a liquid target greatly improves its availability for tracer development.


Inorganic Chemistry | 2008

Expedient multi-step synthesis of organometallic complexes of Tc and Re in high effective specific activity. A new platform for the production of molecular imaging and therapy agents.

Patrick W. Causey; Travis R. Besanger; Paul Schaffer; John F. Valliant

For over thirty years, instant labeling kits which involve no purification steps have been the only method used to prepare (99m)Tc radiopharmaceuticals for clinical studies. To address the limitations imposed by instant kits, which is hindering the development of molecularly targeted Tc- and Re-based imaging and therapy agents, a new strategy for the rapid multistep synthesis and purification of organometallic technetium-based molecular probes and corresponding rhenium-based therapeutic analogues was developed. Beginning with MO4(-) (M = (99m)Tc, (186/188)Re), the carbonyl precursor [M(CO)3(H2O)3](+) was synthesized in 3 min in quantitative yield in a microwave reactor. A dipicolyl ligand was added and the chelate complex was formed in high yield in 2 min using microwave heating at 150 degrees C. This was followed by a new purification strategy to remove unlabeled ligand which entailed using a copper resin/C18 solid phase extraction protocol giving the desired product in greater than 78% decay corrected yield (dcy). Conversion to the corresponding succinimidyl active ester was achieved following a 5 min microwave irradiation at 120 degrees C and C18 solid phase extraction purification in 60% dcy. A series of amides were prepared subsequently by microwave heating at 120 degrees C for 5 min producing the desired targets in greater than 86% dcy. The reported method represents a move away from traditional instant kits toward more versatile platform synthesis and purification technologies that are better suited for producing modern molecular imaging and therapy agents.


Medical Physics | 2013

Manganese-52 positron emission tomography tracer characterization and initial results in phantoms and in vivo

Geoffrey J. Topping; Paul Schaffer; Cornelia Hoehr; Thomas J. Ruth; Vesna Sossi

PURPOSE Manganese(II) is employed as a contrast agent with magnetic resonance imaging (MRI) for study of neuronal activation in rats and mice. However, at the concentrations required for MRI, Mn may induce pharmacological or toxic effects. Positron emission tomography (PET) imaging of (52)MnCl2 at tracer doses has the potential to allow similar Mn studies as manganese-enhanced MRI while providing quantitative results and avoiding toxic effects. In this work, (52)MnCl2 is produced and characterized as a PET tracer in phantoms and in rats. METHODS (52)MnCl2 was produced by proton irradiation of natural Cr foil and separated by column chromatography. Images were acquired on a Siemens Focus 120 small animal PET scanner. Phantom images were acquired to assess uniformity, resolution, cascade background correction, and count rate linearity. Images of rats were also acquired after systemic and intracerebroventricular (ICV) administration of (52)MnCl2 to investigate Mn(II) distribution in vivo. RESULTS Irradiation yield was 74.6 ± 8.5 kBq/μA min (52)Mn at end of bombardment with initial specific activity of at least 3.5 MBq/nmol. (52)Mn PET images show similar uniformity and resolution to (18)F. (18)F based detector efficiency normalization is adequate for (52)Mn imaging. Subtraction of a rescaled random events distribution from sinogram data is effective for cascade correction of (52)Mn PET data. After systemic injection, (52)Mn appears in structures throughout the body of rats, including bones, liver, intestines, and the pituitary gland, but does not appear detectably throughout the brain. After ICV injection, (52)Mn remains in the brain and spinal cord. CONCLUSIONS (52)Mn is a promising tracer for small animal PET imaging, yielding image quality comparable to (18)F. Potential applications include studies similar to Mn-enhanced neuronal MRI, and in other organ systems including bones, spinal cord, and the digestive tract.


The Journal of Nuclear Medicine | 2014

Functional Imaging of Oxidative Stress with a Novel PET Imaging Agent, 18F-5-Fluoro-l-Aminosuberic Acid

Jack M. Webster; Christine Morton; Bruce Fletcher Johnson; Hua Yang; Michael James Rishel; Brian Duh-Lan Lee; Qing Miao; Chittari Pabba; Donald Yapp; Paul Schaffer

Glutathione is the predominant endogenous cellular antioxidant, playing a critical role in the cellular defensive response to oxidative stress by neutralizing free radicals and reactive oxygen species. With cysteine as the rate-limiting substrate in glutathione biosynthesis, the cystine/glutamate transporter (system xc-) represents a potentially attractive PET biomarker to enable in vivo quantification of xc- activity in response to oxidative stress associated with disease. We have developed a system xc- substrate that incorporates characteristics of both natural substrates, l-cystine and l-glutamate (l-Glu). l-aminosuberic acid (l-ASu) has been identified as a more efficient system xc- substrate than l-Glu, leading to an assessment of a series of anionic amino acids as prospective PET tracers. Herein, we report the synthesis and in vitro and in vivo validation of a lead candidate, 18F-5-fluoro-aminosuberic acid (18F-FASu), as a PET tracer for functional imaging of a cellular response to oxidative stress with remarkable tumor uptake and retention. Methods: 18F-FASu was identified as a potential PET tracer based on an in vitro screening of compounds similar to l-cystine and l-Glu. Affinity toward system xc- was determined via in vitro uptake and inhibition studies using oxidative stress–induced EL4 and SKOV-3 cells. In vivo biodistribution and PET imaging studies were performed in mice bearing xenograft tumors (EL4 and SKOV-3). Results: In vitro assay results determined that l-ASu inhibited system xc- as well as or better than l-Glu. The direct comparison of uptake of tritiated compounds demonstrated more efficient system xc- uptake of l-ASu than l-Glu. Radiosynthesis of 18F-FASu allowed the validation of uptake for the fluorine-bearing derivative in vitro. Evaluation in vivo demonstrated primarily renal clearance and uptake of approximately 8 percentage injected dose per gram in SKOV-3 tumors, with tumor-to-blood and tumor-to-muscle ratios of approximately 12 and approximately 28, respectively. 18F-FASu uptake was approximately 5 times greater than 18F-FDG uptake in SKOV-3 tumors. Dynamic PET imaging demonstrated uptake in EL4 tumor xenografts of approximately 6 percentage injected dose per gram and good tumor retention for at least 2 h after injection. Conclusion: 18F-FASu is a potentially useful metabolic tracer for PET imaging of a functional cellular response to oxidative stress. 18F-FASu may provide more sensitive detection than 18F-FDG in certain tumors.


The Journal of Nuclear Medicine | 2014

Cross-Linked Polyethylene Glycol Beads to Separate 99mTc-Pertechnetate from Low-Specific-Activity Molybdenum

Francois Benard; Stefan K. Zeisler; Milan Vuckovic; Kuo-Shyan Lin; Zhengxing Zhang; Nadine Colpo; Xinchi Hou; Thomas J. Ruth; Paul Schaffer

We report a kit-based approach for the purification of sodium pertechnetate (99mTcO4−) from solutions with high MoO42− content. Methods: Cross-linked polyethylene glycol resins (ChemMatrix) were used to separate 99mTc and molybdenum in 4N NaOH. The resins were loaded at various flow rates and eluted with water to release 99mTc. The 99mTc solution was passed through a cation exchange resin and an alumina cartridge, followed by saline elution. This process was tested with cyclotron-produced 99mTc using an automated system and disposable kits. Results: Optimal results were obtained by loading 500 mg of resin at flow rates of up to 3.1 mL/min, with quantitative extraction of 99mTc from the molybdate solution and complete release of 99mTc after elution with water. The automated system was highly efficient at isolating Na99mTcO4 within minutes, with a recovery rate of 92.7% ± 1.1% (mean ± SD) using cyclotron-produced 99mTc. Conclusion: ChemMatrix resins were highly effective at separating 99mTcO4− from molybdate solutions.

Collaboration


Dive into the Paul Schaffer's collaboration.

Top Co-Authors

Avatar

Francois Benard

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Anna Celler

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinchi Hou

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vesna Sossi

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge