Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Scholz is active.

Publication


Featured researches published by Paul Scholz.


PLOS ONE | 2015

Deep sequencing of the murine olfactory receptor neuron transcriptome.

Ninthujah Kanageswaran; Marilen Demond; Maximilian Nagel; Benjamin S. P. Schreiner; Sabrina Baumgart; Paul Scholz; Janine Altmüller; Christian Becker; Julia F. Doerner; Heike Conrad; Sonja Oberland; Christian H. Wetzel; Eva M. Neuhaus; Hanns Hatt

The ability of animals to sense and differentiate among thousands of odorants relies on a large set of olfactory receptors (OR) and a multitude of accessory proteins within the olfactory epithelium (OE). ORs and related signaling mechanisms have been the subject of intensive studies over the past years, but our knowledge regarding olfactory processing remains limited. The recent development of next generation sequencing (NGS) techniques encouraged us to assess the transcriptome of the murine OE. We analyzed RNA from OEs of female and male adult mice and from fluorescence-activated cell sorting (FACS)-sorted olfactory receptor neurons (ORNs) obtained from transgenic OMP-GFP mice. The Illumina RNA-Seq protocol was utilized to generate up to 86 million reads per transcriptome. In OE samples, nearly all OR and trace amine-associated receptor (TAAR) genes involved in the perception of volatile amines were detectably expressed. Other genes known to participate in olfactory signaling pathways were among the 200 genes with the highest expression levels in the OE. To identify OE-specific genes, we compared olfactory neuron expression profiles with RNA-Seq transcriptome data from different murine tissues. By analyzing different transcript classes, we detected the expression of non-olfactory GPCRs in ORNs and established an expression ranking for GPCRs detected in the OE. We also identified other previously undescribed membrane proteins as potential new players in olfaction. The quantitative and comprehensive transcriptome data provide a virtually complete catalogue of genes expressed in the OE and present a useful tool to uncover candidate genes involved in, for example, olfactory signaling, OR trafficking and recycling, and proliferation.


Chemical Senses | 2016

Transcriptome Analysis of Murine Olfactory Sensory Neurons during Development Using Single Cell RNA-Seq

Paul Scholz; Benjamin Kalbe; Fabian Jansen; Janine Altmueller; Christian Becker; Julia Mohrhardt; Benjamin S. P. Schreiner; Guenter Gisselmann; Hanns Hatt; Sabrina Osterloh

Mammalian odor reception is achieved by highly specialized olfactory sensory neurons (OSNs) located in the nasal cavity. Despite their importance for the daily survival of most mammals, the gene expression and regulatory profiles of these single neurons are poorly understood. Here, we report the isolation of individual GFP-labeled OSNs from Olfr73-GFP mice at different developmental stages followed by Next Generation Sequencing, thereby analyzing the detailed transcriptome for the first time. We characterized the repertoire of olfactory receptors (ORs) and found that in addition to the highly and predominant detectable Olfr73, 20 additional ORs were stably detectable at lower transcript levels in adult mice. Additionally, OSNs collected from mice of earlier developmental stages did not show any stable OR patterns. However, more than one predominant OR per OSN was detectable.


Frontiers in Physiology | 2016

Olfactory Receptors Modulate Physiological Processes in Human Airway Smooth Muscle Cells

Benjamin Kalbe; Jürgen Knobloch; Viola M. Schulz; Christine Wecker; Marian Schlimm; Paul Scholz; Fabian Jansen; Erich Stoelben; Stathis Philippou; Erich Hecker; Hermann Lübbert; Andrea Koch; Hanns Hatt; Sabrina Osterloh

Pathophysiological mechanisms in human airway smooth muscle cells (HASMCs) significantly contribute to the progression of chronic inflammatory airway diseases with limited therapeutic options, such as severe asthma and COPD. These abnormalities include the contractility and hyperproduction of inflammatory proteins. To develop therapeutic strategies, key pathological mechanisms, and putative clinical targets need to be identified. In the present study, we demonstrated that the human olfactory receptors (ORs) OR1D2 and OR2AG1 are expressed at the RNA and protein levels in HASMCs. Using fluorometric calcium imaging, specific agonists for OR2AG1 and OR1D2 were identified to trigger transient Ca2+ increases in HASMCs via a cAMP-dependent signal transduction cascade. Furthermore, the activation of OR2AG1 via amyl butyrate inhibited the histamine-induced contraction of HASMCs, whereas the stimulation of OR1D2 with bourgeonal led to an increase in cell contractility. In addition, OR1D2 activation induced the secretion of IL-8 and GM-CSF. Both effects were inhibited by the specific OR1D2 antagonist undecanal. We herein provide the first evidence to show that ORs are functionally expressed in HASMCs and regulate pathophysiological processes. Therefore, ORs might be new therapeutic targets for these diseases, and blocking ORs could be an auspicious strategy for the treatment of early-stage chronic inflammatory lung diseases.


Journal of Cell Science | 2014

The scaffold protein MUPP1 regulates odorant-mediated signaling in olfactory sensory neurons

Sabrina Baumgart; Fabian Jansen; Willem Bintig; Benjamin Kalbe; Christian Herrmann; Fabian Klumpers; S. David Köster; Paul Scholz; Sebastian Rasche; Ruth Dooley; Nils Metzler-Nolte; Marc Spehr; Hanns Hatt; Eva M. Neuhaus

ABSTRACT The olfactory signal transduction cascade transforms odor information into electrical signals by a cAMP-based amplification mechanism. The mechanisms underlying the very precise temporal and spatial organization of the relevant signaling components remains poorly understood. Here, we identify, using co-immunoprecipitation experiments, a macromolecular assembly of signal transduction components in mouse olfactory neurons, organized through MUPP1. Disruption of the PDZ signaling complex, through use of an inhibitory peptide, strongly impaired odor responses and changed the activation kinetics of olfactory sensory neurons. In addition, our experiments demonstrate that termination of the response is dependent on PDZ-based scaffolding. These findings provide new insights into the functional organization, and regulation, of olfactory signal transduction.


European Journal of Cell Biology | 2017

Helional-induced activation of human olfactory receptor 2J3 promotes apoptosis and inhibits proliferation in a non-small-cell lung cancer cell line

Benjamin Kalbe; Viola M. Schulz; Marian Schlimm; Stathis Philippou; Nikolina Jovancevic; Fabian Jansen; Paul Scholz; Hermann Lübbert; Marvin Jarocki; Andreas Faissner; Erich Hecker; Sophie Veitinger; Teresa Tsai; Sabrina Osterloh; Hanns Hatt

Studies within the last decade have localized the functional expression of olfactory receptors (ORs) to cells outside of the olfactory epithelium. In human hepatocarcinoma and prostate cancer cells, the activation of ORs by odors modulates elementary physiological processes and leads to an inhibitory effect on proliferation. Cells of the respiratory tract are in direct contact with the surrounding air, in which a myriad of volatile molecules, especially odors, are present. Non-small-cell lung cancer (NSCLC) has a high prevalence, a high mortality rate and is difficult to treat. NSCLC cells are nearly resistant to common chemotherapeutic approaches, and surgical resection provides the only possible chance of a cure for most patients. New approaches for the treatment of NSCLC are the focus of many current studies. Thus, it is of interest to characterize the functional expression of ORs in cancer cells of the lung and to investigate the impact of ORs on pathophysiological processes. In the present study, we demonstrate that the expression of OR2J3 and cytosolic Ca2+ increase via the activation of the agonist helional in the NSCLC cell line A549. We further investigated the underlying pathway. Helional triggers phoshoinositol-3 kinase (PI3K), signaling the release of intracellular Ca2+ and phosphorylation of ERK. We observed that OR2J3 activation induces apoptosis and inhibits cell proliferation and migration in long-term stimulus experiments with helional. Our study provides the first evidence of the functional expression of an OR in NSCLC cells and its putative therapeutic impact.


Human Molecular Genetics | 2016

Impact of the Usher syndrome on olfaction

Fabian Jansen; Benjamin Kalbe; Paul Scholz; Marta Mikosz; Kirsten A. Wunderlich; Stefan Kurtenbach; Kerstin Nagel-Wolfrum; Uwe Wolfrum; Hanns Hatt; Sabrina Osterloh

Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction.


Frontiers in Cellular Neuroscience | 2016

Identification of a Novel Gnao-Mediated Alternate Olfactory Signaling Pathway in Murine OSNs

Paul Scholz; Julia Mohrhardt; Fabian Jansen; Benjamin Kalbe; Claudia Haering; Katharina Klasen; Hanns Hatt; Sabrina Osterloh

It is generally agreed that in olfactory sensory neurons (OSNs), the binding of odorant molecules to their specific olfactory receptor (OR) triggers a cAMP-dependent signaling cascade, activating cyclic-nucleotide gated (CNG) channels. However, considerable controversy dating back more than 20 years has surrounded the question of whether alternate signaling plays a role in mammalian olfactory transduction. In this study, we demonstrate a specific alternate signaling pathway in Olfr73-expressing OSNs. Methylisoeugenol (MIEG) and at least one other known weak Olfr73 agonist (Raspberry Ketone) trigger a signaling cascade independent from the canonical pathway, leading to the depolarization of the cell. Interestingly, this pathway is mediated by Gnao activation, leading to Cl− efflux; however, the activation of adenylyl cyclase III (ACIII), the recruitment of Ca2+ from extra-or intracellular stores, and phosphatidylinositol 3-kinase-dependent signaling (PI signaling) are not involved. Furthermore, we demonstrated that our newly identified pathway coexists with the canonical olfactory cAMP pathway in the same OSN and can be triggered by the same OR in a ligand-selective manner. We suggest that this pathway might reflect a mechanism for odor recognition predominantly used in early developmental stages before olfactory cAMP signaling is fully developed. Taken together, our findings support the existence of at least one odor-induced alternate signal transduction pathway in native OSNs mediated by Olfr73 in a ligand-selective manner.


Journal of Biological Chemistry | 2015

Ion Transporter NKCC1 - Modulator of Neurogenesis in Murine Olfactory Neurons

Claudia Haering; Ninthujah Kanageswaran; Pascal Bouvain; Paul Scholz; Janine Altmüller; Christian Becker; Janine Wäring-Bischof; Hanns Hatt

Background: NKCC1 is controversially discussed as the main chloride transporter in olfactory epithelium. Results: Lack of NKCC1 results in impaired odorant detection and a decrease in the number of mature neurons. Conclusion: NKCC1 is involved in chloride accumulation but also reveals an impact in neurogenesis. Significance: This work contributes to the understanding of olfactory epithelium neurogenesis. Olfaction is one of the most crucial senses for vertebrates regarding foraging and social behavior. Therefore, it is of particular interest to investigate the sense of smell, its function on a molecular level, the signaling proteins involved in the process and the mechanism of required ion transport. In recent years, the precise role of the ion transporter NKCC1 in olfactory sensory neuron (OSN) chloride accumulation has been a controversial subject. NKCC1 is expressed in OSNs and is involved in chloride accumulation of dissociated neurons, but it had not been shown to play a role in mouse odorant sensation. Here, we present electro-olfactogram recordings (EOG) demonstrating that NKCC1-deficient mice exhibit significant defects in perception of a complex odorant mixture (Henkel100) in both air-phase and submerged approaches. Using next generation sequencing (NGS) and RT-PCR experiments of NKCC1-deficient and wild type mouse transcriptomes, we confirmed the absence of a highly expressed ion transporter that could compensate for NKCC1. Additional histological investigations demonstrated a reduced number of cells in the olfactory epithelium (OE), resulting in a thinner neuronal layer. Therefore, we conclude that NKCC1 is an important transporter involved in chloride ion accumulation in the olfactory epithelium, but it is also involved in OSN neurogenesis.


PLOS ONE | 2016

Modulatory Effects of Sex Steroids Progesterone and Estradiol on Odorant Evoked Responses in Olfactory Receptor Neurons.

Ninthujah Kanageswaran; Maximilian Nagel; Paul Scholz; Julia Mohrhardt; Hanns Hatt

The influence of the sex steroid hormones progesterone and estradiol on physiology and behavior during menstrual cycles and pregnancy is well known. Several studies indicate that olfactory performance changes with cyclically fluctuating steroid hormone levels in females. Knowledge of the exact mechanisms behind how female sex steroids modulate olfactory signaling is limited. A number of different known genomic and non-genomic actions that are mediated by progesterone and estradiol via interactions with different receptors may be responsible for this modulation. Next generation sequencing-based RNA-Seq transcriptome data from the murine olfactory epithelium (OE) and olfactory receptor neurons (ORNs) revealed the expression of several membrane progestin receptors and the estradiol receptor Gpr30. These receptors are known to mediate rapid non-genomic effects through interactions with G proteins. RT-PCR and immunohistochemical staining results provide evidence for progestin and estradiol receptors in the ORNs. These data support the hypothesis that steroid hormones are capable of modulating the odorant-evoked activity of ORNs. Here, we validated this hypothesis through the investigation of steroid hormone effects by submerged electro-olfactogram and whole cell patch-clamp recordings of ORNs. For the first time, we demonstrate that the sex steroid hormones progesterone and estradiol decrease odorant-evoked signals in the OE and ORNs of mice at low nanomolar concentrations. Thus, both of these sex steroids can rapidly modulate the odor responsiveness of ORNs through membrane progestin receptors and the estradiol receptor Gpr30.


Journal of Molecular Endocrinology | 2016

Helional induces Ca2+ decrease and serotonin secretion of QGP-1 cells via a PKG-mediated pathway

Benjamin Kalbe; Marian Schlimm; Julia Mohrhardt; Paul Scholz; Fabian Jansen; Hanns Hatt; Sabrina Osterloh

The secretion, motility and transport by intestinal tissues are regulated among others by specialized neuroendocrine cells, the so-called enterochromaffin (EC) cells. These cells detect different luminal stimuli, such as mechanical stimuli, fatty acids, glucose and distinct chemosensory substances. The EC cells react to the changes in their environment through the release of transmitter molecules, most importantly serotonin, to mediate the corresponding physiological response. However, little is known about the molecular targets of the chemical stimuli delivered from consumed food, spices and cosmetics within EC cells. In this study, we evaluated the expression of the olfactory receptor (OR) 2J3 in the human pancreatic EC cell line QGP-1 at the mRNA and protein levels. Using ratiofluorometric Ca(2+) imaging experiments, we demonstrated that the OR2J3-specific agonist helional induces a transient dose-dependent decrease in the intracellular Ca(2+) levels. This Ca(2+) decrease is mediated by protein kinase G (PKG) on the basis that the specific pharmacological inhibition of PKG with Rp-8-pCPT-cGMPS abolished the helional-induced Ca(2+) response. Furthermore, stimulation of QGP-1 cells with helional caused a dose-dependent release of serotonin that was comparable with the release induced by the application of a direct PKG activator (8-bromo-cGMP). Taken together, our results demonstrate that luminal odorants can be detected by specific ORs in QGP-1 cells and thus cause the directed release of serotonin and a PKG-dependent decrease in intracellular Ca(2.)

Collaboration


Dive into the Paul Scholz's collaboration.

Top Co-Authors

Avatar

Hanns Hatt

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge