Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Skrzypczyk is active.

Publication


Featured researches published by Paul Skrzypczyk.


Journal of Physics A | 2016

The role of quantum information in thermodynamics—a topical review

John Goold; Marcus Huber; Arnau Riera; Lídia del Rio; Paul Skrzypczyk

This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world.


Physical Review Letters | 2014

Quantifying Einstein-Podolsky-Rosen steering.

Paul Skrzypczyk; Miguel Navascues; Daniel Cavalcanti

Einstein-Podolsky-Rosen steering is a form of bipartite quantum correlation that is intermediate between entanglement and Bell nonlocality. It allows for entanglement certification when the measurements performed by one of the parties are not characterized (or are untrusted) and has applications in quantum key distribution. Despite its foundational and applied importance, Einstein-Podolsky-Rosen steering lacks a quantitative assessment. Here we propose a way of quantifying this phenomenon and use it to study the steerability of several quantum states. In particular, we show that every pure entangled state is maximally steerable and the projector onto the antisymmetric subspace is maximally steerable for all dimensions; we provide a new example of one-way steering and give strong support that states with positive-partial transposition are not steerable.


Physical Review Letters | 2010

How small can thermal machines be? The smallest possible refrigerator.

Noah Linden; Sandu Popescu; Paul Skrzypczyk

We investigate the fundamental dimensional limits to thermodynamic machines. In particular, we show that it is possible to construct self-contained refrigerators (i.e., not requiring external sources of work) consisting of only a small number of qubits and/or qutrits. We present three different models, consisting of two qubits, a qubit and a qutrit with nearest-neighbor interactions, and a single qutrit, respectively. We then investigate the fundamental limits to their performance; in particular, we show that it is possible to cool towards absolute zero.


Physical Review Letters | 2009

Nonlocality Distillation and Postquantum Theories with Trivial Communication Complexity

Nicolas Brunner; Paul Skrzypczyk

We first present a protocol for deterministically distilling nonlocality, building upon a recent result of Forster et al. [Phys. Rev. Lett. 102, 120401 (2009)10.1103/PhysRevLett.102.120401]. Our protocol, which is optimal for two-copy distillation, works efficiently for a specific class of postquantum nonlocal boxes, which we term correlated nonlocal boxes. In the asymptotic limit, all correlated nonlocal boxes are distilled to the maximally nonlocal box of Popescu and Rohrlich. Then, taking advantage of a result of Brassard et al. [Phys. Rev. Lett. 96, 250401 (2006)10.1103/PhysRevLett.96.250401] we show that all correlated nonlocal boxes make communication complexity trivial, and therefore appear very unlikely to exist in nature. Astonishingly, some of these nonlocal boxes are arbitrarily close to the set of classical correlations. This result therefore gives new insight to the problem of why quantum nonlocality is limited.


Reports on Progress in Physics | 2017

Quantum steering: a review with focus on semidefinite programming

Daniel Cavalcanti; Paul Skrzypczyk

Quantum steering refers to the non-classical correlations that can be observed between the outcomes of measurements applied on half of an entangled state and the resulting post-measured states that are left with the other party. From an operational point of view, a steering test can be seen as an entanglement test where one of the parties performs uncharacterised measurements. Thus, quantum steering is a form of quantum inseparability that lies in between the well-known notions of Bell nonlocality and entanglement. Moreover, quantum steering is also related to several asymmetric quantum information protocols where some of the parties are considered untrusted. Because of these facts, quantum steering has received a lot of attention both theoretically and experimentally. The main goal of this review is to give an overview of how to characterise quantum steering through semidefinite programming. This characterisation provides efficient numerical methods to address a number of problems, including steering detection, quantification, and applications. We also give a brief overview of some important results that are not directly related to semidefinite programming. Finally, we make available a collection of semidefinite programming codes that can be used to study the topics discussed in this article.


Physical Review X | 2015

Extractable Work from Correlations

Martí Perarnau-Llobet; Karen V. Hovhannisyan; Marcus Huber; Paul Skrzypczyk; Nicolas Brunner; Antonio Acín

Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work we study how to use correlations among quantum systems to optimally store work. We analyse this question for isolated quantum ensembles, where the work can be naturally divided into two contributions: a local contribution from each system, and a global contribution originating from correlations among systems. We focus on the latter and consider quantum systems which are locally thermal, thus from which any extractable work can only come from correlations. We compute the maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes for a large number of systems.


Journal of Physics A | 2011

The smallest refrigerators can reach maximal efficiency

Paul Skrzypczyk; Nicolas Brunner; Noah Linden; Sandu Popescu

We investigate whether size imposes a fundamental constraint on the efficiency of small thermal machines. We analyse in detail a model of a small self-contained refrigerator consisting of three qubits. We show analytically that this system can reach the Carnot efficiency, thus demonstrating that there exists no complementarity between size and efficiency.


Physical Review A | 2009

Closed sets of nonlocal correlations

Jonathan Allcock; Nicolas Brunner; Noah Linden; Sandu Popescu; Paul Skrzypczyk; Tamás Vértesi

We present a fundamental concept - closed sets of correlations - for studying nonlocal correlations. We argue that sets of correlations corresponding to information-theoretic principles, or more generally to consistent physical theories, must be closed under a natural set of operations. Hence, studying the closure of sets of correlations gives insight into which information-theoretic principles are genuinely different, and which are ultimately equivalent. This concept also has implications for understanding why quantum nonlocality is limited, and for finding constraints on physical theories beyond quantum mechanics.


Physical Review E | 2014

Entanglement enhances cooling in microscopic quantum refrigerators.

Nicolas Brunner; Marcus Huber; Noah Linden; Sandu Popescu; Ralph Silva; Paul Skrzypczyk

Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.


Nature Communications | 2015

Detection of entanglement in asymmetric quantum networks and multipartite quantum steering

Daniel Cavalcanti; Paul Skrzypczyk; G. H. Aguilar; R. V. Nery; P. H. Souto Ribeiro; S. P. Walborn

The future of quantum communication relies on quantum networks composed by observers sharing multipartite quantum states. The certification of multipartite entanglement will be crucial to the usefulness of these networks. In many real situations it is natural to assume that some observers are more trusted than others in the sense that they have more knowledge of their measurement apparatuses. Here we propose a general method to certify all kinds of multipartite entanglement in this asymmetric scenario and experimentally demonstrate it in an optical experiment. Our results, which can be seen as a definition of genuine multipartite quantum steering, give a method to detect entanglement in a scenario in between the standard entanglement and fully device-independent scenarios, and provide a basis for semi-device-independent cryptographic applications in quantum networks.

Collaboration


Dive into the Paul Skrzypczyk's collaboration.

Top Co-Authors

Avatar

Daniel Cavalcanti

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcus Huber

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ana Belén Sainz

Perimeter Institute for Theoretical Physics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge