Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Stoodley is active.

Publication


Featured researches published by Paul Stoodley.


Cellular Microbiology | 2009

Evolving concepts in biofilm infections

Luanne Hall-Stoodley; Paul Stoodley

Several pathogens associated with chronic infections, including Pseudomonas aeruginosa in cystic fibrosis pneumonia, Haemophilus influenzae and Streptococcus pneumoniae in chronic otitis media, Staphylococcus aureus in chronic rhinosinusitis and enteropathogenic Escherichia coli in recurrent urinary tract infections, are linked to biofilm formation. Biofilms are usually defined as surface‐associated microbial communities, surrounded by an extracellular polymeric substance (EPS) matrix. Biofilm formation has been demonstrated for numerous pathogens and is clearly an important microbial survival strategy. However, outside of dental plaques, fewer reports have investigated biofilm development in clinical samples. Typically biofilms are found in chronic diseases that resist host immune responses and antibiotic treatment and these characteristics are often cited for the ability of bacteria to persist in vivo. This review examines some recent attempts to examine the biofilm phenotype in vivo and discusses the challenges and implications for defining a biofilm phenotype.


Infection and Immunity | 2002

Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms

Jeff G. Leid; Mark E. Shirtliff; John William Costerton; Paul Stoodley

ABSTRACT Staphylococcus aureus is a common pathogen responsible for nosocomial and community infections. It readily colonizes indwelling catheters, forming microbiotic communities termed biofilms. S. aureus bacteria in biofilms are protected from killing by antibiotics and the bodys immune system. For years, one mechanism behind biofilm resistance to attack from the immune systems sentinel leukocytes has been conceptualized as a deficiency in the ability of the leukocytes to penetrate the biofilm. We demonstrate here that under conditions mimicking physiological shear, leukocytes attach, penetrate, and produce cytokines in response to maturing and fully matured S. aureus biofilm.


Journal of Industrial Microbiology & Biotechnology | 2002

Biofilm material properties as related to shear-induced deformation and detachment phenomena

Paul Stoodley; R. Cargo; Cory J. Rupp; Suzanne Wilson; Isaac Klapper

Biofilms of various Pseudomonas aeruginosa strains were grown in glass flow cells under laminar and turbulent flows. By relating the physical deformation of biofilms to variations in fluid shear, we found that the biofilms were viscoelastic fluids which behaved like elastic solids over periods of a few seconds but like linear viscous fluids over longer times. These data can be explained using concepts of associated polymeric systems, suggesting that the extracellular polymeric slime matrix determines the cohesive strength. Biofilms grown under high shear tended to form filamentous streamers while those grown under low shear formed an isotropic pattern of mound-shaped microcolonies. In some cases, sustained creep and necking in response to elevated shear resulted in a time-dependent fracture failure of the “tail” of the streamer from the attached upstream “head.” In addition to structural differences, our data suggest that biofilms grown under higher shear were more strongly attached and were cohesively stronger than those grown under lower shears.


Applied and Environmental Microbiology | 2001

Growth and Detachment of Cell Clusters from Mature Mixed-Species Biofilms

Paul Stoodley; Suzanne Wilson; Luanne Hall-Stoodley; John D. Boyle; Hilary M. Lappin-Scott; John William Costerton

ABSTRACT Detachment from biofilms is an important consideration in the dissemination of infection and the contamination of industrial systems but is the least-studied biofilm process. By using digital time-lapse microscopy and biofilm flow cells, we visualized localized growth and detachment of discrete cell clusters in mature mixed-species biofilms growing under steady conditions in turbulent flow in situ. The detaching biomass ranged from single cells to an aggregate with a diameter of approximately 500 μm. Direct evidence of local cell cluster detachment from the biofilms was supported by microscopic examination of filtered effluent. Single cells and small clusters detached more frequently, but larger aggregates contained a disproportionately high fraction of total detached biomass. These results have significance in the establishment of an infectious dose and public health risk assessment.


Biotechnology and Bioengineering | 1999

Structural Deformation of Bacterial Biofilms Caused by Short-Term Fluctuations in Fluid Shear: An In Situ Investigation of Biofilm Rheology

Paul Stoodley; Zbigniew Lewandowski; John D. Boyle; Hilary M. Lappin-Scott

The physical properties (rheology) of biofilms will determine the shape and mechanical stability of the biofilm structure and consequently affect both mass transfer and detachment processes. Biofilm viscoelasticity is also thought to increase fluid energy losses in pipelines. Yet there is very little information on the rheology of intact biofilms. This is due in part to the difficulty in using conventional testing techniques. The size and nature of biofilms makes them difficult to handle, while removal from a surface destroys the integrity of the sample. We have developed a method which allowed us to conduct simple stress-strain and creep experiments on mixed and pure culture biofilms in situ by observing the structural deformations caused by changes in hydrodynamic shear stress (tau(w)). The biofilms were grown under turbulent pipe flow (flow velocity (u) = 1 m/s, Reynolds number (Re) = 3600, tau(w) = 5. 09 N/m(2)) for between 12 and 23 days. The resulting biofilms were heterogeneous and consisted of filamentous streamers that were readily deformed by changes in tau(w). At tau(w) of 10.11 N/m(2) the streamers were flattened so that the thickness was reduced by 25%. We estimated that the shear modulus (G) of the mixed culture biofilm was 27 N/m(2) and the apparent elastic modulus (E(app)) of both biofilms was in the range of 17 to 40 N/m(2). The biofilms behaved like elastic and viscoelastic solids below the tau(w) at which they were grown but behaved like viscoelastic fluids at elevated tau(w). The implications of these results for fluid energy losses and the processes of mass transfer and detachment are discussed.


Applied and Environmental Microbiology | 2002

Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms

B. Purevdorj; John William Costerton; Paul Stoodley

ABSTRACT Biofilms were grown from wild-type (WT) Pseudomonas aeruginosa PAO1 and the cell signaling lasI mutant PAO1-JP1 under laminar and turbulent flows to investigate the relative contributions of hydrodynamics and cell signaling for biofilm formation. Various biofilm morphological parameters were quantified using Image Structure Analyzer software. Multivariate analysis demonstrated that both cell signaling and hydrodynamics significantly (P < 0.000) influenced biofilm structure. In turbulent flow, both biofilms formed streamlined patches, which in some cases developed ripple-like wave structures which flowed downstream along the surface of the flow cell. In laminar flow, both biofilms formed monolayers interspersed with small circular microcolonies. Ripple-like structures also formed in four out of six WT biofilms, although their velocity was approximately 10 times less than that of those that formed in the turbulent flow cells. The movement of biofilm cell clusters over solid surfaces may have important clinical implications for the dissemination of biofilm subject to fluid shear, such as that found in catheters. The ability of the cell signaling mutant to form biofilms in high shear flow demonstrates that signaling mechanisms are not required for the formation of strongly adhered biofilms. Similarity between biofilm morphologies in WT and mutant biofilms suggests that the dilution of signal molecules by mass transfer effects in faster flowing systems mollifies the dramatic influence of signal molecules on biofilm structure reported in previous studies.


Biotechnology and Bioengineering | 1997

Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy.

Dirk de Beer; Paul Stoodley; Zbigniew Lewandowski

A new technique for the determination of local diffusion coefficients in biofilms is described. It is based on the microinjection of fluorescent dyes and quantitative analysis of the subsequent plume formation using confocal laser microscopy. The diffusion coefficients of fluorescein (MW 332), TRITC-IgG (MW 150000) and phycoerythrin (MW 240000) were measured in the cell clusters and interstitial voids of a heterogeneous biofilm. The diffusivities measured in the voids were close to the theoretical values in water. Fluorescein had the same diffusivity in cell clusters, voids, and sterile medium. TRITC-IgG did not diffuse in cell clusters, presumably due to binding to the cell cluster matrix. After treatment of the biofilm with bovine serum albumin, binding capacity decreased and the diffusion coefficient could be measured. The diffusivity of phycoerythrin in cell clusters was impeded by 41%, compared to interstitial voids. From the diffusion data of phycoerythrin it was further calculated that the cell cluster matrix had the characteristics of a gel with 0.6 nm thick fibers and pore diameters of 80 nm. (c) 1997 John Wiley & Sons, Inc.


Expert Review of Anti-infective Therapy | 2003

Bacterial biofilms: a diagnostic and therapeutic challenge

Christoph A. Fux; Paul Stoodley; Luanne Hall-Stoodley; J. William Costerton

Bacteria have traditionally been regarded as individual organisms growing in homogeneous planktonic populations. However, bacteria in natural environments usually form communities of surface-adherent organisms embedded in an extracellular matrix, called biofilms. Current antimicrobial strategies often fail to control bacteria in the biofilm mode of growth. Treatment failure is particularly frequent in association with intracorporeal or transcutaneous medical devices and compromised host immunity. The rising prevalence of these risk factors over the last decades has paralleled the increase in biofilm infections. This review discusses the shortcomings of current therapies against biofilms both in theory and with clinical examples. Biofilm characteristics are described with a focus on new diagnostic and therapeutic targets.


Current Opinion in Biotechnology | 2002

Developmental regulation of microbial biofilms

Luanne Hall-Stoodley; Paul Stoodley

Sophisticated molecular and microscopic methods used to study biofilm formation are rapidly broadening our understanding of surface-attached microbial communities in a wide variety of organisms. Regulatory mechanisms involved in the attachment and subsequent development of mature biofilms are being elucidated. Common themes are beginning to emerge, providing promise for the development of sophisticated control strategies.


Journal of Bacteriology | 2004

Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model

C.A. Fux; Suzanne Wilson; Paul Stoodley

Catheter-related bloodstream infections due to Staphylococcus aureus are of increasing clinical importance. The pathophysiological steps leading to colonization and infection, however, are still incompletely defined. We observed growth and detachment of S. aureus biofilms in an in vitro catheter-infection model by using time-lapse microscopy. Biofilm emboli were characterized by their size and their susceptibility for oxacillin. Biofilm dispersal was found to be a dynamic process in which clumps of a wide range of diameters detach. Large detached clumps were highly tolerant to oxacillin compared with exponential-phase planktonic cultures. Interestingly, the degree of antibiotic tolerance in stationary-phase planktonic cultures was equal to that in the large clumps. The mechanical disruption of large clumps reduced the minimal bactericidal concentration (MBC) by more than 1,000 times. The MBC for whole biofilm effluent, consisting of particles with an average number of 20 bacteria was 3.5 times higher than the MBC for planktonic cultures. We conclude that the antibiotic resistance of detached biofilm particles depends on the embolus size and could be attributed to nutrient-limited stationary-phase physiology of cells within the clumps. We hypothesize that the detachment of multicellular clumps may explain the high rate of symptomatic metastatic infections seen with S. aureus.

Collaboration


Dive into the Paul Stoodley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Nistico

Allegheny General Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandeep Kathju

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. William Costerton

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge