Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul V. Bernhardt is active.

Publication


Featured researches published by Paul V. Bernhardt.


Coordination Chemistry Reviews | 1990

Complexes of polyaza macrocycles bearing pendent coordinating groups

Paul V. Bernhardt; Geoffrey A. Lawrance

Presentation de travaux relatifs a la reactivite chimique de metaux de transitions vis a vis de macrocycles substitues triaza, tetraaza et pentaaza, ions Co(III) et Ni(II), principalement. Synthese bibliographique


Journal of Medicinal Chemistry | 2010

Novel thiosemicarbazones of the ApT and DpT Series and their copper complexes: Identification of pronounced redox activity and characterization of their antitumor activity

Patric J. Jansson; Philip C. Sharpe; Paul V. Bernhardt; Des R. Richardson

The novel chelators 2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazone (HAp44mT) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (HDp44mT) have been examined to elucidate the structure-activity relationships necessary to form copper (Cu) complexes with pronounced antitumor activity. Electrochemical studies demonstrated that the Cu complexes of these ligands had lower redox potentials than their iron complexes. Moreover, the Cu complexes where the ligand/metal ratio was 1:1 rather than 2:1 had significantly higher intracellular oxidative properties and antitumor efficacy. Interestingly, the 2:1 complex was shown to dissociate to give significant amounts of the 1:1 complex that could be the major cytotoxic effector. Both types of Cu complex showed significantly more antiproliferative activity than the ligand alone. We also demonstrate the importance of the inductive effects of substituents on the carbonyl group of the parent ketone, which influence the Cu(II/I) redox potentials because of their proximity to the metal center. The structure-activity relationships described are important for the design of potent thiosemicarbazone Cu complexes.


Journal of Medicinal Chemistry | 2009

2-Acetylpyridine thiosemicarbazones are potent iron chelators and antiproliferative agents: redox activity, iron complexation and characterization of their antitumor activity.

Des R. Richardson; Danuta S. Kalinowski; Vera Richardson; Philip C. Sharpe; David B. Lovejoy; Mohammad Shariful Islam; Paul V. Bernhardt

Through systematic structure-activity studies of the 2-benzoylpyridine thiosemicarbazone (HBpT), 2-(3-nitrobenzoyl)pyridine thiosemicarbazone (HNBpT) and dipyridylketone thiosemicarbazone (HDpT) series of iron (Fe) chelators, we identified structural features necessary to form Fe complexes with potent anticancer activity (J. Med. Chem. 2007, 50, 3716-3729). In this investigation, we generated the related 2-acetylpyridine thiosemicarbazone (HApT) analogues to examine the influence of the methyl group at the imine carbon. Four of the six HApT chelators had potent antitumor activity (IC(50): 0.001-0.002 microM) and Fe chelation efficacy that was similar to the most effective HBpT and HDpT ligands. The HApT Fe complexes had the lowest Fe(III/II) redox potentials of any thiosemicarbazone series we have generated. This property, in combination with their ability to effectively chelate cellular Fe, make the HApT series one of the most potent antiproliferative agents developed by our group.


Journal of Medicinal Chemistry | 2009

Iron chelators of the dipyridylketone thiosemicarbazone class: Precomplexation and transmetalation effects on anticancer activity

Paul V. Bernhardt; Philip C. Sharpe; Mohammad Shariful Islam; David B. Lovejoy; Danuta S. Kalinowski; Des R. Richardson

We previously reported a series of di-2-pyridylketone thiosemicarbazone (HDpT) chelators that showed marked and selective antitumor activity (Whitnall, M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 14901-14906). To further understand their biological efficacy, we report the characterization and activity of their Mn(II), Co(III), Ni(II), Cu(II), and Zn(II) complexes. The X-ray crystal structures of four divalent (Mn, Ni, Cu, and Zn) and one trivalent (Fe) complexes are reported. Electrochemistry shows the Fe(III/II) and Cu(II/I) potentials of the complexes may be redox-active within cells. Stability constants were also determined for the Mn(II), Ni(II), Cu(II), and Zn(II) complexes. All divalent complexes underwent transmetalation upon encountering Fe(II), to form low spin ferrous complexes. Importantly, the divalent Mn(II), Ni(II), Cu(II), and Zn(II) complexes of the HDpT analogues are equally active in preventing proliferation as their ligands, suggesting the complexes act as lipophilic vehicles facilitating intracellular delivery of the free ligand upon metal dissociation.


Journal of Biological Inorganic Chemistry | 1999

Crystal and molecular structure of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron(III) complex: an iron chelator with anti-tumour activity

Des R. Richardson; Paul V. Bernhardt

Abstract Previous studies have demonstrated that 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and several other aroylhydrazone chelators possess anti-neoplastic activity due to their ability to bind intracellular iron. In this study we have examined the structure and properties of NIH and its FeIII complex in order to obtain further insight into its anti-tumour activity. Two tridentate NIH ligands deprotonate upon coordination to FeIII in a meridional fashion to form a distorted octahedral, high-spin complex. Solution electrochemistry of [Fe(NIH–H)2]+ shows that the trivalent oxidation state is dominant over a wide potential range and that the FeII analogue is not a stable form of this complex. The fact that [Fe(NIH–H)2]+ cannot cycle between the FeII and FeIII states suggests that the production of toxic free-radical species, e.g. OH. or O2.–, is not part of this ligands cytotoxic action. This suggestion is supported by cell culture experiments demonstrating that the addition of FeIII to NIH prevents its anti-proliferative effect. The chemistry of this chelator and its FeIII complex are discussed in the context of understanding its anti-tumour activity.


Journal of Medicinal Chemistry | 2012

Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo

David B. Lovejoy; Danae M. Sharp; Nicole Seebacher; Peyman Obeidy; Thomas Prichard; Christian Stefani; Maram T. Basha; Philip C. Sharpe; Patric J. Jansson; Danuta S. Kalinowski; Paul V. Bernhardt; Des R. Richardson

We developed a series of second-generation di-2-pyridyl ketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) ligands to improve the efficacy and safety profile of these potential antitumor agents. Two novel DpT analogues, Dp4e4mT and DpC, exhibited pronounced and selective activity against human lung cancer xenografts in vivo via the intravenous and oral routes. Importantly, these analogues did not induce the cardiotoxicity observed at high nonoptimal doses of the first-generation DpT analogue, Dp44mT. The Cu(II) complexes of these ligands exhibited potent antiproliferative activity having redox potentials in a range accessible to biological reductants. The activity of the copper complexes of Dp4e4mT and DpC against lung cancer cells was synergistic in combination with gemcitabine or cisplatin. It was demonstrated by EPR spectroscopy that dimeric copper compounds of the type [CuLCl](2), identified crystallographically, dissociate in solution to give monomeric 1:1 Cu:ligand complexes. These monomers represent the biologically active form of the complex.


Journal of Biological Inorganic Chemistry | 2003

Cytotoxic iron chelators: characterization of the structure, solution chemistry and redox activity of ligands and iron complexes of the di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues

Paul V. Bernhardt; Lorraine M. Caldwell; Timothy B. Chaston; Piao Chin; Des R. Richardson

Di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and a range of its analogues comprise a series of monobasic acids that are capable of binding iron (Fe) as tridentate (N,N,O) ligands. Recently, we have shown that these chelators are highly cytotoxic, but show selective activity against cancer cells. Particularly interesting was the fact that cytotoxicity of the HPKIH analogues is maintained even after complexation with Fe. To understand the potent anti-tumor activity of these compounds, we have fully characterized their chemical properties. This included examination of the solution chemistry and X-ray crystal structures of both the ligands and Fe complexes from this class and the ability of these complexes to mediate redox reactions. Potentiometric titrations demonstrated that all chelators are present predominantly in their charge-neutral form at physiological pH (7.4), allowing access across biological membranes. Keto–enol tautomerism of the ligands was identified, with the tautomers exhibiting distinctly different protonation constants. Interestingly, the chelators form low-spin (diamagnetic) divalent Fe complexes in solution. The chelators form distorted octahedral complexes with FeII, with two tridentate ligands arranged in a meridional fashion. Electrochemistry of the Fe complexes in both aqueous and non-aqueous solutions revealed that the complexes are oxidized to their ferric form at relatively high potentials, but this oxidation is coupled to a rapid reaction with water to form a hydrated (carbinolamine) derivative, leading to irreversible electrochemistry. The Fe complexes of the HPKIH analogues caused marked DNA degradation in the presence of hydrogen peroxide. This observation confirms that Fe complexes from the HPKIH series mediate Fenton chemistry and do not repel DNA. Collectively, studies on the solution chemistry and structure of these HPKIH analogues indicate that they can bind cellular Fe and enhance its redox activity, resulting in oxidative damage to vital biomolecules.


Current Topics in Medicinal Chemistry | 2011

The Medicinal Chemistry of Novel Iron Chelators for the Treatment of Cancer

Zaklina Kovacevic; Danuta S. Kalinowski; David B. Lovejoy; Yu Yu; Yohan Suryo Rahmanto; Phillip C. Sharpe; Paul V. Bernhardt; Des R. Richardson

Cancer is one of the leading causes of death worldwide and there is an increasing need for novel anti-tumor therapeutics with greater selectivity and potency. A new strategy in the treatment of cancer has focused on targeting an essential cell metabolite, iron (Fe). Iron is vital for cell growth and metabolism, forming a crucial component of the active site of ribonucleotide reductase (RR), the rate-limiting enzyme in DNA synthesis. Cancer cells in particular require large amounts of Fe to proliferate, making them more susceptible to the Fe deficiency caused by Fe chelators. Beginning with primordial siderophores, Fe chelators have since evolved to a new generation of potent and efficient anti-cancer agents. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) ligands that demonstrate marked and selective anti-tumor activity both in vitro and in vivo against a wide spectrum of tumors. The mechanism of action of these novel ligands includes alterations in the expression of key regulatory molecules as well as the generation of redox active Fe complexes. Interestingly, non-synthetic Fe chelators including silybin and curcumin, both of which are derived from plants, also have vast potential in the treatment of cancer. This review explores the development of novel Fe chelators for the treatment of cancer and their mechanisms of action.


Australian Journal of Chemistry | 2006

Enzyme Electrochemistry — Biocatalysis on an Electrode

Paul V. Bernhardt

Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.


Journal of Biological Inorganic Chemistry | 2005

Novel diaroylhydrazine ligands as iron chelators: coordination chemistry and biological activity

Paul V. Bernhardt; Piao Chin; Philip C. Sharpe; Jing-Yan C. Wang; Des R. Richardson

The search for orally effective drugs for the treatment of iron overload disorders is an important goal in improving the health of patients suffering diseases such as β-thalassemia major. Herein, we report the syntheses and characterization of some new members of a series of N-aroyl-N′-picolinoyl hydrazine chelators (the H2IPH analogs). Both 1:1 and 1:2 FeIII:L complexes were isolated and the crystal structures of Fe(HPPH)Cl2, Fe(4BBPH)Cl2, Fe(HAPH)(APH) and Fe(H3BBPH)(3BBPH) were determined (H2PPH=N,N′-bis-picolinoyl hydrazine; H2APH=N-4-aminobenzoyl-N′-picolinoyl hydrazine, H23BBPH=N-3-bromobenzoyl-N′-picolinoylhydrazine and H24BBPH=N-(4-bromobenzoyl)-N′-(picolinoyl)hydrazine). In each case, a tridentate N,N,O coordination mode of each chelator with Fe was observed. The FeIII complexes of these ligands have been synthesized and their structural, spectroscopic and electrochemical characterization are reported. Five of these new chelators, namely H2BPH (N-(benzoyl)-N′-(picolinoyl)hydrazine), H2TPH (N-(2-thienyl)-N′-(picolinoyl)-hydrazine), H2PPH, H23BBPH and H24BBPH, showed high efficacy at mobilizing 59Fe from cells and inhibiting 59Fe uptake from the serum Fe transport protein, transferrin (Tf). Indeed, their activity was much greater than that found for the chelator in current clinical use, desferrioxamine (DFO), and similar to that observed for the orally active chelator, pyridoxal isonicotinoyl hydrazone (H2PIH). The ability of the chelators to inhibit 59Fe uptake could not be accounted for by direct chelation of 59Fe from 59Fe–Tf. The most effective chelators also showed low antiproliferative activity which was similar to or less than that observed with DFO, which is important in terms of their potential use as agents to treat Fe-overload disease.

Collaboration


Dive into the Paul V. Bernhardt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark J. Riley

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aminul Huq Mirza

Universiti Brunei Darussalam

View shared research outputs
Top Co-Authors

Avatar

Mohammad Akbar Ali

Universiti Brunei Darussalam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrike Kappler

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Curt Wentrup

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge