Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul V. Fish is active.

Publication


Featured researches published by Paul V. Fish.


Nature Reviews Drug Discovery | 2012

Epigenetic protein families: a new frontier for drug discovery

C.H. Arrowsmith; C. Bountra; Paul V. Fish; Kevin Lee; Matthieu Schapira

Epigenetic regulation of gene expression is a dynamic and reversible process that establishes normal cellular phenotypes but also contributes to human diseases. At the molecular level, epigenetic regulation involves hierarchical covalent modification of DNA and the proteins that package DNA, such as histones. Here, we review the key protein families that mediate epigenetic signalling through the acetylation and methylation of histones, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones. These protein families are emerging as druggable classes of enzymes and druggable classes of protein–protein interaction domains. In this article, we discuss the known links with disease, basic molecular mechanisms of action and recent progress in the pharmacological modulation of each class of proteins.


Cancer Research | 2013

PFI-1, a Highly Selective Protein Interaction Inhibitor, Targeting BET Bromodomains

Sarah Picaud; David Da Costa; Angeliki Thanasopoulou; Panagis Filippakopoulos; Paul V. Fish; Martin Philpott; Oleg Fedorov; Paul E. Brennan; Mark Edward Bunnage; Dafydd R. Owen; James E. Bradner; Phillippe Taniere; Brendan O'Sullivan; Susanne Müller; Juerg Schwaller; Tatjana Stankovic; Stefan Knapp

Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT) are transcriptional regulators required for efficient expression of several growth promoting and antiapoptotic genes as well as for cell-cycle progression. BET proteins are recruited on transcriptionally active chromatin via their two N-terminal bromodomains (BRD), a protein interaction module that specifically recognizes acetylated lysine residues in histones H3 and H4. Inhibition of the BET-histone interaction results in transcriptional downregulation of a number of oncogenes, providing a novel pharmacologic strategy for the treatment of cancer. Here, we present a potent and highly selective dihydroquinazoline-2-one inhibitor, PFI-1, which efficiently blocks the interaction of BET BRDs with acetylated histone tails. Cocrystal structures showed that PFI-1 acts as an acetyl-lysine (Kac) mimetic inhibitor efficiently occupying the Kac binding site in BRD4 and BRD2. PFI-1 has antiproliferative effects on leukemic cell lines and efficiently abrogates their clonogenic growth. Exposure of sensitive cell lines with PFI-1 results in G1 cell-cycle arrest, downregulation of MYC expression, as well as induction of apoptosis and induces differentiation of primary leukemic blasts. Intriguingly, cells exposed to PFI-1 showed significant downregulation of Aurora B kinase, thus attenuating phosphorylation of the Aurora substrate H3S10, providing an alternative strategy for the specific inhibition of this well-established oncology target.


Drug Discovery Today | 2012

Bridging solubility between drug discovery and development.

Li Di; Paul V. Fish; Takashi Mano

Solubility has a crucial role in the success of a drug candidate. Compounds with low solubility not only cause problems for in vitro and in vivo assays, but also add significant burdens to drug development. Drug discovery and drug development often have different solubility screening requirements and methodologies have been developed to meet the needs of these different stages.


Journal of Medicinal Chemistry | 2012

Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit.

Paul V. Fish; Panagis Filippakopoulos; Gerwyn Bish; Paul E. Brennan; Mark Edward Bunnage; Andrew Simon Cook; Oleg Federov; Brian S. Gerstenberger; Hannah M. Jones; Stefan Knapp; Brian D. Marsden; Karl H. Nocka; Dafydd R. Owen; Martin Philpott; Sarah Picaud; Michael J. Primiano; Michael Ralph; Nunzio Sciammetta; John David Trzupek

The posttranslational modification of chromatin through acetylation at selected histone lysine residues is governed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). The significance of this subset of the epigenetic code is interrogated and interpreted by an acetyllysine-specific protein–protein interaction with bromodomain reader modules. Selective inhibition of the bromo and extra C-terminal domain (BET) family of bromodomains with a small molecule is feasible, and this may represent an opportunity for disease intervention through the recently disclosed antiproliferative and anti-inflammatory properties of such inhibitors. Herein, we describe the discovery and structure–activity relationship (SAR) of a novel, small-molecule chemical probe for BET family inhibition that was identified through the application of structure-based fragment assessment and optimization techniques. This has yielded a potent, selective compound with cell-based activity (PFI-1) that may further add to the understanding of BET family function within the bromodomains.


Proceedings of the National Academy of Sciences of the United States of America | 2014

(R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells

Dalia Barsyte-Lovejoy; Fengling Li; Menno J. Oudhoff; John Howard Tatlock; Aiping Dong; Hong Zeng; Hong Wu; Spencer A. Freeman; Matthieu Schapira; Guillermo Senisterra; Ekaterina Kuznetsova; Richard Marcellus; Abdellah Allali-Hassani; Steven Kennedy; Jean-Philippe Lambert; Amber L. Couzens; Ahmed Aman; Anne-Claude Gingras; Rima Al-awar; Paul V. Fish; Brian S. Gerstenberger; Lee R. Roberts; Caroline L. Benn; Rachel L. Grimley; Mitchell J.S. Braam; Fabio Rossi; Marius Sudol; Peter J. Brown; Mark Edward Bunnage; Dafydd R. Owen

Significance Protein methyltransferases constitute an emerging but undercharacterized class of therapeutic targets with diverse roles in normal human biology and disease. Small-molecule “chemical probes” can be powerful tools for the functional characterization of such enzymes, and here we report the discovery of (R)-PFI-2—a first-in-class, potent, highly selective, and cell-active inhibitor of the methyltransferase activity of SETD7 [SET domain containing (lysine methyltransferase) 7]—and two related compounds for control and chemoproteomics studies. We used these compounds to characterize the role of SETD7 in signaling, in the Hippo pathway, that controls cell growth and organ size. Our work establishes a chemical biology tool kit for the study of the diverse roles of SETD7 in cells and further validates protein methyltransferases as a druggable target class. SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2—a first-in-class, potent (Kiapp = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7—and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Bioorganic & Medicinal Chemistry Letters | 2008

Design and synthesis of morpholine derivatives. SAR for dual serotonin & noradrenaline reuptake inhibition.

Paul V. Fish; Christopher James Deur; Xinmin Gan; Keri Lynn Greene; D.W.T. Hoople; Malcolm MacKenny; Kimberly Suzanne Para; Keith Reeves; Thomas Ryckmans; Cory Michael Stiff; Alan Stobie; Florian Wakenhut; Gavin A. Whitlock

Single enantiomer (SS) and (RR) 2-[(phenoxy)(phenyl)methyl]morpholine derivatives 5, 8-23 are inhibitors of monoamine reuptake. Target compounds were prepared using an enantioselective synthesis employing a highly specific enzyme-catalysed resolution of racemic n-butyl 4-benzylmorpholine-2-carboxylate (26) as the key step. Structure-activity relationships established that serotonin and noradrenaline reuptake inhibition are functions of stereochemistry and aryl/aryloxy ring substitution. Consequently, selective SRI, selective NRI and dual SNRIs were all identified. One of these compounds, a potent and selective dual SNRI, (SS)-5a was selected as a candidate for further pre-clinical evaluation.


Bioorganic & Medicinal Chemistry Letters | 2008

Pyridyl-phenyl ether monoamine reuptake inhibitors: Impact of lipophilicity on dual SNRI pharmacology and off-target promiscuity.

Gavin A. Whitlock; Paul V. Fish; M. Jonathan Fray; Alan Stobie; Florian Wakenhut

A novel series of pyridyl-phenyl ethers are disclosed, which possess dual 5-HT and NA reuptake pharmacology with good selectivity over dopamine reuptake inhibition. An analysis of the relationship between lipophilicity and pharmacology highlighted that potent dual SNRI activity was only achievable at c log P>3.5. The series was found to possess significant polypharmacology issues, and we concluded that this off-target promiscuity was related to lipophilicity.


Bioorganic & Medicinal Chemistry Letters | 2009

4-Piperidines and 3-pyrrolidines as dual serotonin and noradrenaline reuptake inhibitors: Design, synthesis and structure–activity relationships

Paul V. Fish; Mark David Andrews; M. Jonathan Fray; Alan Stobie; Florian Wakenhut; Gavin A. Whitlock

Single enantiomer [(aryloxy)(pyridinyl)methyl]piperidine and pyrrolidine derivatives 5-9 are inhibitors of monoamine reuptake. Structure-activity relationships established that monoamine reuptake inhibition are functions of amine, pyridine isomer, aryloxy ring substitution and stereochemistry. Consequently, selective NRIs, selective SRIs, dual SNRIs and triple SNDRIs were all identified. Dual SNRIs 5l-a and 9c were evaluated in additional pharmacology and pharmacokinetic studies as representative examples from this series.


Bioorganic & Medicinal Chemistry Letters | 2009

7-Sulfonamido-3-benzazepines as potent and selective 5-HT2C receptor agonists: Hit-to-lead optimization

Paul V. Fish; Alan Daniel Brown; Edel Evrard; Lee R. Roberts

New 7-sulfonamido-3-benzazepines 3 are disclosed as 5-HT(2C) receptor agonists. Appropriate substitution of the amino group (R(1)R(2)N-) gave compounds that were potent 5-HT(2C) agonists with minimal activation of the 5-HT(2A) and 5-HT(2B) receptors. Furthermore, representative examples had excellent in vitro ADME properties and good selectivity over ion channel activity.


Journal of Medicinal Chemistry | 2014

Multiparameter Optimization in CNS Drug Discovery: Design of Pyrimido[4,5-d]azepines as Potent 5-Hydroxytryptamine 2C (5-HT2C) Receptor Agonists with Exquisite Functional Selectivity over 5-HT2A and 5-HT2B Receptors

R. Ian Storer; Paul E. Brennan; Alan Daniel Brown; Peter J. Bungay; Kelly Conlon; Matthew Corbett; Robert P. DePianta; Paul V. Fish; Alexander Heifetz; Danny K.H. Ho; Alan S. Jessiman; Gordon McMurray; César Augusto F. de Oliveira; Lee Richard Roberts; James Root; Veerabahu Shanmugasundaram; Michael J. Shapiro; Melanie Skerten; Dominique Westbrook; Simon Wheeler; Gavin A. Whitlock; John B. Wright

A series of 4-substituted pyrimido[4,5-d]azepines that are potent, selective 5-HT2C receptor partial agonists is described. A rational medicinal chemistry design strategy to deliver CNS penetration coupled with SAR-based optimization of selectivity and agonist potency provided compounds with the desired balance of preclinical properties. Lead compounds 17 (PF-4479745) and 18 (PF-4522654) displayed robust pharmacology in a preclinical canine model of stress urinary incontinence (SUI) and no measurable functional agonism at the key selectivity targets 5-HT2A and 5-HT2B in relevant tissue-based assay systems. Utilizing recent advances in the structural biology of GPCRs, homology modeling has been carried out to rationalize binding and agonist efficacy of these compounds.

Collaboration


Dive into the Paul V. Fish's collaboration.

Researchain Logo
Decentralizing Knowledge