Paul Vochezer
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul Vochezer.
Journal of the Atmospheric Sciences | 2016
Emma Järvinen; Martin Schnaiter; G. Mioche; Olivier Jourdan; V. Shcherbakov; Anja Costa; Armin Afchine; Martina Krämer; Fabian Heidelberg; Tina Jurkat; Christiane Voigt; Hans Schlager; Leonid Nichman; Martin Gallagher; Edwin Hirst; Carl Schmitt; Aaron Bansemer; Andrew J. Heymsfield; P. Lawson; Ugo Tricoli; K. Pfeilsticker; Paul Vochezer; O. Möhler; Thomas Leisner
AbstractHomogeneous freezing of supercooled droplets occurs in convective systems in low and midlatitudes. This droplet-freezing process leads to the formation of a large amount of small ice particles, so-called frozen droplets, that are transported to the upper parts of anvil outflows, where they can influence the cloud radiative properties. However, the detailed microphysics and, thus, the scattering properties of these small ice particles are highly uncertain. Here, the link between the microphysical and optical properties of frozen droplets is investigated in cloud chamber experiments, where the frozen droplets were formed, grown, and sublimated under controlled conditions. It was found that frozen droplets developed a high degree of small-scale complexity after their initial formation and subsequent growth. During sublimation, the small-scale complexity disappeared, releasing a smooth and near-spherical ice particle. Angular light scattering and depolarization measurements confirmed that these sublim...
Journal of Geophysical Research | 2016
Piotr Kupiszewski; Marco Zanatta; S. Mertes; Paul Vochezer; Gary Lloyd; Johannes Schneider; Ludwig Schenk; Martin Schnaiter; Urs Baltensperger; E. Weingartner; M. Gysel
Abstract Ice residual (IR) and total aerosol properties were measured in mixed‐phase clouds (MPCs) at the high‐alpine Jungfraujoch research station. Black carbon (BC) content and coating thickness of BC‐containing particles were determined using single‐particle soot photometers. The ice activated fraction (IAF), derived from a comparison of IR and total aerosol particle size distributions, showed an enrichment of large particles in the IR, with an increase in the IAF from values on the order of 10−4 to 10−3 for 100 nm (diameter) particles to 0.2 to 0.3 for 1 μm (diameter) particles. Nonetheless, due to the high number fraction of submicrometer particles with respect to total particle number, IR size distributions were still dominated by the submicrometer aerosol. A comparison of simultaneously measured number size distributions of BC‐free and BC‐containing IR and total aerosol particles showed depletion of BC by number in the IR, suggesting that BC does not play a significant role in ice nucleation in MPCs at the Jungfraujoch. The potential anthropogenic climate impact of BC via the glaciation effect in MPCs is therefore likely to be negligible at this site and in environments with similar meteorological conditions and a similar aerosol population. The IAF of the BC‐containing particles also increased with total particle size, in a similar manner as for the BC‐free particles, but on a level 1 order of magnitude lower. Furthermore, BC‐containing IR were found to have a thicker coating than the BC‐containing total aerosol, suggesting the importance of atmospheric aging for ice nucleation.
Applied Optics | 2014
Emma Järvinen; Paul Vochezer; O. Möhler; Martin Schnaiter
Corona-producing cirrus clouds were generated and measured under chamber conditions at the AIDA cloud chamber in Karlsruhe. We were able to measure the scattering properties as well as microphysical properties of these clouds under well-defined laboratory conditions in contrast with previous studies of corona-producing clouds, where the measurements were conducted by means of lidar and in situ aircraft measurements. Our results are in agreement with those of previous studies, confirming that corona-producing cirrus clouds consist of a narrow distribution of small (median Dp=19-32 μm) and compact ice crystals. We showed that the ice crystals in these clouds are most likely formed in homogeneous freezing processes. As a result of the homogeneous freezing process, the ice crystals grow uniformly in size; furthermore, the majority of the ice crystals have rough surface features.
Atmospheric Chemistry and Physics | 2015
Martin Schnaiter; Emma Järvinen; Paul Vochezer; Ahmed Abdelmonem; Robert Wagner; Olivier Jourdan; G. Mioche; V. Shcherbakov; Carl Schmitt; Ugo Tricoli; Zbigniew Ulanowski; Andrew J. Heymsfield
Atmospheric Chemistry and Physics | 2015
Emma Järvinen; Karoliina Ignatius; Leonid Nichman; Thomas Kristensen; Claudia Fuchs; C. R. Hoyle; Niko Florian Höppel; Joel C. Corbin; J. S. Craven; Jonathan Duplissy; Sebastian Ehrhart; Imad El Haddad; Carla Frege; H. Gordon; Tuija Jokinen; Peter Kallinger; J. Kirkby; Alexei Kiselev; K.-H. Naumann; Tuukka Petäjä; Tamara Pinterich; André S. H. Prévôt; Harald Saathoff; Thea Schiebel; Kamalika Sengupta; Mario Simon; Jay G. Slowik; Jasmin Tröstl; Annele Virtanen; Paul Vochezer
Atmospheric Measurement Techniques | 2016
Paul Vochezer; Emma Järvinen; R. Wagner; Piotr Kupiszewski; Thomas Leisner; Martin Schnaiter
Atmospheric Chemistry and Physics | 2014
A. Worringen; K. Kandler; Nathalie Benker; Thomas Dirsch; S. Mertes; Ludwig Schenk; U. Kästner; Fabian Frank; Björn Nillius; Ulrich Bundke; D. Rose; Joachim Curtius; Piotr Kupiszewski; E. Weingartner; Paul Vochezer; Johannes Schneider; S. Schmidt; Stephan Weinbruch; Martin Ebert
Atmospheric Research | 2014
Darrel Baumgardner; Roy Newton; Martina Krämer; J. Meyer; Alexander Beyer; Manfred Wendisch; Paul Vochezer
Atmospheric Measurement Techniques | 2014
Piotr Kupiszewski; E. Weingartner; Paul Vochezer; Martin Schnaiter; Alessandro Bigi; M. Gysel; B. Rosati; E. Toprak; S. Mertes; Urs Baltensperger; Villigen Psi; Reggio Emilia
Atmospheric Chemistry and Physics | 2015
S. Schmidt; J. Schneider; Thomas Klimach; S. Mertes; Ludwig Schenk; Joachim Curtius; Piotr Kupiszewski; E. Hammer; Paul Vochezer; Gary Lloyd; Martin Ebert; K. Kandler; Stephan Weinbruch; S. Borrmann