Paul W. Denton
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul W. Denton.
Journal of Virology | 2012
Paul W. Denton; Rikke Olesen; Shailesh K. Choudhary; Nancy M. Archin; Angela Wahl; Michael D. Swanson; Morgan Chateau; Tomonori Nochi; John F. Krisko; Rae Ann Spagnuolo; David M. Margolis; J. Victor Garcia
ABSTRACT Here we demonstrate that a combination of tenofovir, emtricitabine, and raltegravir effectively suppresses peripheral and systemic HIV replication in humanized BLT mice. We also demonstrate that antiretroviral therapy (ART)-treated humanized BLT mice harbor latently infected resting human CD4+ T cells that can be induced ex vivo to produce HIV. We observed that the levels of infected resting human CD4+ T cells present in BLT mice are within the range of those observed circulating in patients undergoing suppressive ART. These results demonstrate the potential of humanized BLT mice as an attractive model for testing the in vivo efficacy of novel HIV eradication strategies.
Journal of Virology | 2011
Paul W. Denton; Florence A. Othieno; Francisco Martinez-Torres; Wei Zou; John F. Krisko; Elisa Fleming; Sima Zein; Daniel A. Powell; Angela Wahl; Youn Tae Kwak; Brett D. Welch; Michael S. Kay; Deborah A. Payne; Philippe Gallay; Ettore Appella; Jacob D. Estes; Min Lu; J. Victor Garcia
ABSTRACT Recent iPrEx clinical trial results provided evidence that systemic preexposure prophylaxis (PrEP) with emtricitabine (FTC) and tenofovir disoproxil fumarate (TDF) can partially prevent rectal HIV transmission in humans. Similarly, we have previously demonstrated that systemic administration of the same FTC-TDF combination efficiently prevented rectal transmission in humanized bone marrow/liver/thymus (BLT) mice. The CAPRISA 004 trial recently demonstrated that topical application of the tenofovir could partially prevent vaginal HIV-1 transmission in humans. To further validate the usefulness of the BLT mouse model for testing HIV prevention strategies, we evaluated the topical administration of tenofovir as used in CAPRISA 004 to prevent vaginal HIV transmission in BLT mice. Our results demonstrate that vaginally administered 1% tenofovir significantly reduced HIV transmission in BLT mice (P = 0.002). Together with the results obtained after systemic antiretroviral PrEP, these topical inhibitor data serve to validate the use of humanized BLT mice to evaluate both systemic and topical inhibitors of HIV transmission. Based on these observations, we tested six additional microbicide candidates for their ability to prevent vaginal HIV transmission: a C-peptide fusion inhibitor (C52L), a membrane-disrupting amphipathic peptide inhibitor (C5A), a trimeric d-peptide fusion inhibitor (PIE12-Trimer), a combination of reverse transcriptase inhibitors (FTC-TDF), a thioester zinc finger inhibitor (TC247), and a small-molecule Rac inhibitor (NSC23766). No protection was seen with the Rac inhibitor NSC23766. The thioester compound TC247 offered partial protection. Significant protection was afforded by FTC-TDF, and complete protection was offered by three different peptide inhibitors tested. Our results demonstrate that these effective topical inhibitors have excellent potential to prevent vaginal HIV transmission in humans.
PLOS Pathogens | 2014
Paul W. Denton; Julie M. Long; Stephen W. Wietgrefe; Craig Sykes; Rae Ann Spagnuolo; Olivia D. Snyder; Katherine E. Perkey; Nancie M. Archin; Shailesh K. Choudhary; Kuo Yang; Michael G. Hudgens; Ira Pastan; Ashley T. Haase; Angela D. M. Kashuba; Edward A. Berger; David M. Margolis; J. Victor Garcia
Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies.
PLOS Pathogens | 2012
Angela Wahl; Michael D. Swanson; Tomonori Nochi; Rikke Olesen; Paul W. Denton; Morgan Chateau; J. Victor Garcia
Currently, over 15% of new HIV infections occur in children. Breastfeeding is a major contributor to HIV infections in infants. This represents a major paradox in the field because in vitro, breast milk has been shown to have a strong inhibitory effect on HIV infectivity. However, this inhibitory effect has never been demonstrated in vivo. Here, we address this important paradox using the first humanized mouse model of oral HIV transmission. We established that reconstitution of the oral cavity and upper gastrointestinal (GI) tract of humanized bone marrow/liver/thymus (BLT) mice with human leukocytes, including the human cell types important for mucosal HIV transmission (i.e. dendritic cells, macrophages and CD4+ T cells), renders them susceptible to oral transmission of cell-free and cell-associated HIV. Oral transmission of HIV resulted in systemic infection of lymphoid and non-lymphoid tissues that is characterized by the presence of HIV RNA in plasma and a gradual decline of CD4+ T cells in peripheral blood. Consistent with infection of the oral cavity, we observed virus shedding into saliva. We then evaluated the role of human breast milk on oral HIV transmission. Our in vivo results demonstrate that breast milk has a strong inhibitory effect on oral transmission of both cell-free and cell-associated HIV. Finally, we evaluated the effect of antiretrovirals on oral transmission of HIV. Our results show that systemic antiretrovirals administered prior to exposure can efficiently prevent oral HIV transmission in BLT mice.
Journal of Reproductive Immunology | 2011
Rikke Olesen; Angela Wahl; Paul W. Denton; J. Victor Garcia
An HIV vaccine capable of providing sterilizing immunity from vaginal infection would reduce the spread of HIV to women. Unfortunately, only one of the four HIV-1 vaccine clinical trials has demonstrated any level of protection (31%) against HIV-1 transmission. Additionally, only one topical microbicide clinical trial has reported an overall reduction in HIV transmission (39%). Developing even more effective vaccines and microbicides will require a better understanding of the key events involved in HIV infection and dissemination at the site of exposure. Novel immunodeficient mice capable of being systemically reconstituted with human hematopoietic stem cells have provided new systems where HIV transmission studies can be performed. Specifically, a humanized mouse model of vaginal HIV transmission has been developed that utilizes the humanized bone marrow-liver-thymus (BLT) mouse. The female reproductive tract (FRT) of humanized BLT mice is reconstituted with functional human immune cells rendering them susceptible to vaginal HIV-1 infection. In this review we focus on four aspects of BLT mice for the study of vaginal HIV-1 transmission: (1) we discuss methods for creating humanized BLT mice and their reconstitution with human hematopoietic cells, (2) we describe reconstitution of the BLT mouse FRT with human immune cells, (3) we highlight the work done regarding vaginal HIV-1 transmission and (4) we summarize the efficacy of systemic pre-exposure prophylaxis (PrEP) to prevent vaginal HIV-1 transmission in BLT mice. BLT mice are a highly relevant small animal model for studying vaginal HIV-1 transmission, prevention and therapy.
Trends in Microbiology | 2012
Paul W. Denton; J. Victor Garcia
Clinical trials testing microbicides and related biomedical interventions to block HIV transmissions have produced contradictory results and to date it is unclear why. Further elucidation of the molecular basis of mucosal HIV transmission and extensive pharmacokinetic and pharmacodynamic analyses are essential to implementing effective prevention strategies. Animal models are of critical importance to this effort and bone marrow-liver-thymus (BLT) humanized mice have recently emerged as a powerful small animal research platform for in vivo efficacy evaluation of mucosal and parenteral HIV-1 prevention interventions. The availability of this validated system for the pre-clinical evaluation of HIV-1 prevention approaches will accelerate the implementation of the best candidate interventions into clinical trials.
PLOS ONE | 2013
Morgan Chateau; Paul W. Denton; Michael D. Swanson; Ian McGowan; J. Victor Garcia
Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (n = 43) were rectally inoculated with either the primary isolate HIV-1JRCSF or the MSM-derived transmitted/founder (T/F) virus HIV-1THRO within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1JRCSF and HIV-1THRO, respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank p = 0.03) for HIV-1JRCSF and 0% (0/6; log rank p = 0.02) for HIV-1THRO. This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides.
Retrovirology | 2012
Wei Zou; Paul W. Denton; Richard L Watkins; John F. Krisko; Tomonori Nochi; John L Foster; J. Victor Garcia
BackgroundThe outcome of untreated HIV-1 infection is progression to AIDS and death in nearly all cases. Some important exceptions are the small number of patients infected with HIV-1 deleted for the accessory gene, nef. With these infections, disease progression is entirely suppressed or greatly delayed. Whether Nef is critical for high levels of replication or is directly cytotoxic remains controversial. The major problem in determining the role of Nef in HIV/AIDS has been the lack of tractable in vivo models where Nef’s complex pathogenic phenotype can be recapitulated.ResultsIntravenous inoculation (3000 to 600,000 TCIU) of BLT humanized mice with HIV-1LAI reproducibly establishes a systemic infection. HIV-1LAI (LAI) replicates to high levels (peak viral load in blood 8,200,000 ± 1,800,000 copies of viral RNA/ml, range 3,600,000 to 20,400,000; n = 9) and exhaustively depletes CD4+ T cells in blood and tissues. CD4+CD8+ thymocytes were also efficiently depleted but CD4+CD8- thymocytes were partially resistant to cell killing by LAI. Infection with a nef-deleted LAI (LAINefdd) gave lower peak viral loads (1,220,000 ± 330,000, range 27,000 to 4,240,000; n = 17). For fourteen of seventeen LAINefdd-infected mice, there was little to no loss of either CD4+ T cells or thymocytes. Both LAI- and LAINefdd-infected mice had about 8% of total peripheral blood CD8+ T cells that were CD38+HLA-DR+ compared <1% for uninfected mice. Three exceptional LAINefdd-infected mice that lost CD4+ T cells received 600,000 TCIU. All three exhibited peak viral loads over 3,000,000 copies of LAINefdd RNA/ml. Over an extended time course, substantial systemic CD4+ T cell loss was observed for the three mice, but there was no loss of CD4+CD8+ or CD4+CD8- thymocytes.ConclusionWe conclude Nef is necessary for elevated viral replication and as a result indirectly contributes to CD4+ T cell killing. Further, Nef was not necessary for the activation of peripheral blood CD8+ T cells following infection. However, CD4+CD8+ thymocyte killing was dependent on Nef even in cases of elevated LAINefdd replication and T cell loss. This depletion of thymic T cell precursors may be a significant factor in the elevated pathogenicity of CXCR4 trophic HIV-1.
Cell Reports | 2013
Tomonori Nochi; Paul W. Denton; Angela Wahl; J. Victor Garcia
Abnormal gut-associated lymphoid tissue (GALT) in humans is associated with infectious and autoimmune diseases, which cause dysfunction of the gastrointestinal (GI) tract immune system. To aid in investigating GALT pathologies in vivo, we bioengineered a human-mouse chimeric model characterized by the development of human GALT structures originating in mouse cryptopatches. This observation expands our mechanistic understanding of the role of cryptopatches in human GALT genesis and emphasizes the evolutionary conservation of this developmental process. Immunoglobulin class switching to IgA occurs in these GALT structures, leading to numerous human IgA-producing plasma cells throughout the intestinal lamina propria. CD4+ T cell depletion within GALT structures results from HIV infection, as it does in humans. This human-mouse chimeric model represents the most comprehensive experimental platform currently available for the study and for the preclinical testing of therapeutics designed to repair disease-damaged GALT.
Retrovirology | 2013
Richard L Watkins; Wei Zou; Paul W. Denton; John F. Krisko; John L Foster; J V Garcia
BackgroundThe HIV-1 accessory protein, Nef, is decisive for progression to AIDS. In vitro characterization of the protein has described many Nef activities of unknown in vivo significance including CD4 downregulation and a number of activities that depend on Nef interacting with host SH3 domain proteins. Here, we use the BLT humanized mouse model of HIV-1 infection to assess their impact on viral replication and pathogenesis and the selection pressure to restore these activities using enforced in vivo evolution.ResultsWe followed the evolution of HIV-1LAI (LAI) with a frame-shifted nef (LAINeffs) during infection of BLT mice. LAINeffs was rapidly replaced in blood by virus with short deletions in nef that restored the open reading frame (LAINeffs∆-1 and LAINeffs∆-13). Subsequently, LAINeffs∆-1 was often replaced by wild type LAI. Unexpectedly, LAINeffs∆-1 and LAINeffs∆-13 Nefs were specifically defective for CD4 downregulation activity. Viruses with these mutant nefs were used to infect BLT mice. LAINeffs∆-1 and LAINeffs∆-13 exhibited three-fold reduced viral replication (compared to LAI) and a 50% reduction of systemic CD4+ T cells (>90% for LAI) demonstrating the importance of CD4 downregulation. These results also demonstrate that functions other than CD4 downregulation enhanced viral replication and pathogenesis of LAINeffs∆-1 and LAINeffs∆-13 compared to LAINeffs. To gain insight into the nature of these activities, we constructed the double mutant P72A/P75A. Multiple Nef activities can be negated by mutating the SH3 domain binding site (P72Q73V74P75L76R77) to P72A/P75A and this mutation does not affect CD4 downregulation. Virus with nef mutated to P72A/P75A closely resembled the wild-type virus in vivo as viral replication and pathogenesis was not significantly altered. Unlike LAINeffs described above, the P72A/P75A mutation had a very weak tendency to revert to wild type sequence.ConclusionsThe in vivo phenotype of Nef is significantly dependent on CD4 downregulation but minimally on the numerous Nef activities that require an intact SH3 domain binding motif. These results suggest that CD4 downregulation plus one or more unknown Nef activities contribute to enhanced viral replication and pathogenesis and are suitable targets for anti-HIV therapy. Enforced evolution studies in BLT mice will greatly facilitate identification of these critical activities.