Paul W. H. I. Parren
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul W. H. I. Parren.
Journal of Virology | 2001
Michael B. Zwick; Aran Frank Labrijn; Meng Wang; Catherine Spenlehauer; Erica Ollmann Saphire; James M. Binley; John P. Moore; Gabriela Stiegler; Hermann Katinger; Dennis R. Burton; Paul W. H. I. Parren
ABSTRACT The identification and epitope mapping of broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies (Abs) is important for vaccine design, but, despite much effort, very few such Abs have been forthcoming. Only one broadly neutralizing anti-gp41 monoclonal Ab (MAb), 2F5, has been described. Here we report on two MAbs that recognize a region immediately C-terminal of the 2F5 epitope. Both MAbs were generated from HIV-1-seropositive donors, one (Z13) from an antibody phage display library, and one (4E10) as a hybridoma. Both MAbs recognize a predominantly linear and relatively conserved epitope, compete with each other for binding to synthetic peptide derived from gp41, and bind to HIV-1MN virions. By flow cytometry, these MAbs appear to bind relatively weakly to infected cells and this binding is not perturbed by pretreatment of the infected cells with soluble CD4. Despite the apparent linear nature of the epitopes of Z13 and 4E10, denaturation of recombinant envelope protein reduces the binding of these MAbs, suggesting some conformational requirements for full epitope expression. Most significantly, Z13 and 4E10 are able to neutralize selected primary isolates from diverse subtypes of HIV-1 (e.g., subtypes B, C, and E). The results suggest that a rather extensive region of gp41 close to the transmembrane domain is accessible to neutralizing Abs and could form a useful target for vaccine design.
Journal of Virology | 2001
Paul W. H. I. Parren; Preston A. Marx; Ann J. Hessell; Amara Luckay; Janet Harouse; Cecilia Cheng-Mayer; John P. Moore; Dennis R. Burton
ABSTRACT A major unknown in human immunodeficiency virus (HIV-1) vaccine design is the efficacy of antibodies in preventing mucosal transmission of R5 viruses. These viruses, which use CCR5 as a coreceptor, appear to have a selective advantage in transmission of HIV-1 in humans. Hence R5 viruses predominate during primary infection and persist throughout the course of disease in most infected people. Vaginal challenge of macaques with chimeric simian/human immunodeficiency viruses (SHIV) is perhaps one of the best available animal models for human HIV-1 infection. Passive transfer studies are widely used to establish the conditions for antibody protection against viral challenge. Here we show that passive intravenous transfer of the human neutralizing monoclonal antibody b12 provides dose-dependent protection to macaques vaginally challenged with the R5 virus SHIV162P4. Four of four monkeys given 25 mg of b12 per kg of body weight 6 h prior to challenge showed no evidence of viral infection (sterile protection). Two of four monkeys given 5 mg of b12/kg were similarly protected, whereas the other two showed significantly reduced and delayed plasma viremia compared to control animals. In contrast, all four monkeys treated with a dose of 1 mg/kg became infected with viremia levels close to those for control animals. Antibody b12 serum concentrations at the time of virus challenge corresponded to approximately 400 (25 mg/kg), 80 (5 mg/kg), and 16 (1 mg/kg) times the in vitro (90%) neutralization titers. Therefore, complete protection against mucosal challenge with an R5 SHIV required essentially complete neutralization of the infecting virus. This suggests that a vaccine based on antibody alone would need to sustain serum neutralizing antibody titers (90%) of the order of 1:400 to achieve sterile protection but that lower titers, around 1:100, could provide a significant benefit. The significance of such substerilizing neutralizing antibody titers in the context of a potent cellular immune response is an important area for further study.
Journal of Virology | 2001
Marjan Hezareh; Ann J. Hessell; Richard Jensen; Jan G. J. van de Winkel; Paul W. H. I. Parren
ABSTRACT The human antibody immunoglobulin G1 (IgG1) b12 neutralizes a broad range of human immunodeficiency virus-type 1 (HIV-1) isolates in vitro and is able to protect against viral challenge in animal models. Neutralization of free virus, which is an antiviral activity of antibody that generally does not require the antibody Fc fragment, likely plays an important role in the protection observed. The role of Fc-mediated effector functions, which may reduce infection by inducing phagocytosis and lysis of virions and infected cells, however, is less clear. To investigate this role, we constructed a panel of IgG1 b12 mutants with point mutations in the second domain of the antibody heavy chain constant region (CH2). These mutations, as expected, did not affect gp120 binding or HIV-1 neutralization. IgG1 b12 mediated strong antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) of HIV-1-infected cells, but these activities were reduced or abrogated for the antibody mutants. Two mutants were of particular interest. K322A showed a twofold reduction in FcγR binding affinity and ADCC, while C1q binding and CDC were abolished. A double mutant (L234A, L235A) did not bind either FcγR or C1q, and both ADCC and CDC functions were abolished. In this study, we confirmed that K322 forms part of the C1q binding site in human IgG1 and plays an important role in the molecular interactions leading to complement activation. Less expectedly, we demonstrate that the lower hinge region in human IgG1 has a strong modulating effect on C1q binding and CDC. The b12 mutants K322A and L234A, L235A are useful tools for dissecting the in vivo roles of ADCC and CDC in the anti-HIV-1 activity of neutralizing antibodies.
Immunity | 1999
Pascal Poignard; Rebecca Sabbe; Gaston Picchio; Meng Wang; Richard J. Gulizia; Hermann Katinger; Paul W. H. I. Parren; Donald E. Mosier; Dennis R. Burton
Neutralizing antibodies can protect against challenge with HIV-1 in vivo if present at appropriate concentrations at the time of viral challenge, but any role in the control of established infection is unclear. Here, we show that high serum concentrations of neutralizing monoclonal antibodies, either singly or as a cocktail, have little sustained effect on viral load in established HIV-1 infection in hu-PBL-SCID mice. In some instances, virus replication of neutralization-sensitive virus continues even in the presence of high levels of neutralizing antibody. In most instances, neutralization escape occurs in a few days, even from a cocktail of three antibodies that recognize distinct epitopes. The results imply that humoral immunity is unlikely to play a significant role in the control of established HIV-1 infection in humans.
Journal of Virology | 2003
Ralph Pantophlet; Erica Ollmann Saphire; Pascal Poignard; Paul W. H. I. Parren; Ian A. Wilson; Dennis R. Burton
ABSTRACT Alanine scanning mutagenesis was performed on monomeric gp120 of human immunodeficiency virus type 1 to systematically identify residues important for gp120 recognition by neutralizing and nonneutralizing monoclonal antibodies (MAbs) to the CD4 binding site (CD4bs). Substitutions that affected the binding of broadly neutralizing antibody b12 were compared to substitutions that affected the binding of CD4 and of two nonneutralizing anti-CD4bs antibodies (b3 and b6) with affinities for monomeric gp120 comparable to that of b12. Not surprisingly, the sensitivities to a number of amino acid changes were similar for the MAbs and for CD4. However, in contrast to what was seen for the MAbs, no enhancing mutations were observed for CD4, suggesting that the virus has evolved toward an optimal gp120-CD4 interaction. Although the epitope maps of the MAbs overlapped, a number of key differences between b12 and the other two antibodies were observed. These differences may explain why b12, in contrast to nonneutralizing antibodies, is able to interact not only with monomeric gp120 but also with functional oligomeric gp120 at the virion surface. Neutralization assays performed with pseudovirions bearing envelopes from a selection of alanine mutants mostly showed a reasonable correlation between the effects of the mutations on b12 binding to monomeric gp120 and neutralization efficacy. However, some mutations produced an effect on b12 neutralization counter to that predicted from gp120 binding data. It appears that these mutations have different effects on the b12 epitope on monomeric gp120 and functional oligomeric gp120. To determine whether monomeric gp120 can be engineered to preferentially bind MAb b12, recombinant gp120s were generated containing combinations of alanine substitutions shown to uniquely enhance b12 binding. Whereas b12 binding was maintained or increased, binding by five nonneutralizing anti-CD4bs MAbs (b3, b6, F105, 15e, and F91) was reduced or completely abolished. These reengineered gp120s are prospective immunogens that may prove capable of eliciting broadly neutralizing antibodies.
Advances in Immunology | 2001
Paul W. H. I. Parren; Dennis R. Burton
Publisher Summary This chapter discusses in vitro and in vivo antiviral activities of antibody. Since experimentation is far easier in vitro, researchers have been sought to develop in vitro assays that are expected to predict activity in vivo. This could be important in both vaccine design and in passive antibody administration. The proposed mechanisms of in vitro neutralization range from those requiring binding of a single antibody molecule to virus to those requiring substantially complete antibody coating of virus. In vitro, antiviral activity can be separated into activity against virions and activity against infected cells. The activity against virions most often considered is neutralization that can be defined as the loss of infectivity, which ensues when antibody molecule(s) bind to a virus particle, and occurs without the involvement of any other agency. In vivo, it is conventional to distinguish phenomenologically between two types of antibody antiviral activity. One of them is the ability of antibody to protect against infection when it is present before or immediately following infection. Evidence for a number of viruses in vitro indicates that lower antibody concentrations are required to inhibit infection propagated by free virus than are required to inhibit infection propagated by cell-to-cell spread.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Maxime Moulard; Sanjay Phogat; Yuuei Shu; Aran Frank Labrijn; Xiaodong Xiao; James M. Binley; Mei-Yun Zhang; Igor A. Sidorov; Christopher C. Broder; James Robinson; Paul W. H. I. Parren; Dennis R. Burton; Dimiter S. Dimitrov
HIV-1 entry into cells involves formation of a complex between gp120 of the viral envelope glycoprotein (Env), a receptor (CD4), and a coreceptor, typically CCR5. Here we provide evidence that purified gp120JR-FL–CD4–CCR5 complexes exhibit an epitope recognized by a Fab (X5) obtained by selection of a phage display library from a seropositive donor with a relatively high broadly neutralizing serum antibody titer against an immobilized form of the trimolecular complex. X5 bound with high (nM) affinity to a variety of Envs, including primary isolates from different clades and Envs with deleted variable loops (V1, -2, -3). Its binding was significantly increased by CD4 and slightly enhanced by CCR5. X5 inhibited infection of peripheral blood mononuclear cells by a selection of representative HIV-1 primary isolates from clades A, B, C, D, E, F, and G with an efficiency comparable to that of the broadly neutralizing antibody IgG1 b12. Furthermore, X5 inhibited cell fusion mediated by Envs from R5, X4, and R5X4 viruses. Of the five broadly cross-reactive HIV-1-neutralizing human monoclonal antibodies known to date, X5 is the only one that exhibits increased binding to gp120 complexed with receptors. These findings suggest that X5 could possibly be used as entry inhibitor alone or in combination with other antiretroviral drugs for the treatment of HIV-1-infected individuals, provide evidence for the existence of conserved receptor-inducible gp120 epitopes that can serve as targets for potent broadly cross-reactive neutralizing antibodies in HIV-1-infected patients, and have important conceptual and practical implications for the development of vaccines and inhibitors.
Journal of Molecular Biology | 2002
Erica Ollmann Saphire; Robyn L. Stanfield; Max Crispin; Paul W. H. I. Parren; Pauline M. Rudd; Raymond A. Dwek; Dennis R. Burton; Ian A. Wilson
The crystal structure of IgG1 b12 represents the first visualization of an intact human IgG with a full-length hinge that has all domains ordered and visible. In comparison to intact murine antibodies and hinge-deletant human antibodies, b12 reveals extreme asymmetry, indicative of the extraordinary interdomain flexibility within an antibody. In addition, the structure provides an illustration of the human IgG1 hinge in its entirety and of asymmetry in the composition of the carbohydrate attached to each C(H)2 domain of the Fc. The two separate hinges assume different conformations in order to accommodate the vastly different placements of the two Fab domains relative to the Fc domain. Interestingly, only one of two possible intra-hinge disulfides is formed.
Journal of Immunology | 2009
Andrew W. Pawluczkowycz; Frank Beurskens; Paul V. Beum; Margaret A. Lindorfer; Jan G. J. van de Winkel; Paul W. H. I. Parren; Ronald P. Taylor
The CD20 mAb ofatumumab (OFA) is more effective than rituximab (RTX) in promoting complement-dependent cytotoxicity (CDC) of B cells via the classical pathway (CP) of complement. CP activation is initiated by C1q binding to cell-bound IgG. Therefore, we examined the role of C1q in the dynamics of complement activation and CDC of B cell lines and primary cells from patients with chronic lymphocytic leukemia, reacted with OFA or RTX. C1q binding, complement activation, and colocalization of C1q with cell-bound mAbs were determined by flow cytometry and high-resolution digital imaging. C1q binds avidly to OFA-opsonized Raji and Daudi cells (KD = 12–16 nM) and colocalizes substantially with cell-bound OFA. Cells opsonized with OFA undergo high levels of complement activation and CDC in C1q-depleted serum supplemented with low concentrations of C1q. Under comparable conditions, RTX-opsonized cells bind less C1q; in addition, even when higher concentrations of C1q are used to achieve comparable C1q binding to RTX-opsonized cells, less complement activation and CDC are observed. Greater CDC induced by OFA may occur because C1q is bound in close proximity and with high avidity to OFA, resulting in effective CP activation. Moreover, OFA binds to the small, extracellular CD20 loop, placing the mAb considerably closer to the cell membrane than does RTX. This may facilitate effective capture and concentration of activated complement components closer to the cell membrane, potentially shielding them from inactivation by fluid phase agents and promoting efficient generation of the membrane attack complex.
Journal of Virology | 2003
Pascal Poignard; Maxime Moulard; Edwin Golez; Veronique Vivona; Michael Franti; Sara Venturini; Meng Wang; Paul W. H. I. Parren; Dennis R. Burton
ABSTRACT Virion capture assays, in which immobilized antibodies (Abs) capture virus particles, have been used to suggest that nonneutralizing Abs bind effectively to human immunodeficiency virus type 1 (HIV-1) primary viruses. Here, we show that virion capture assays, under conditions commonly reported in the literature, give a poor indication of epitope expression on the surface of infectious primary HIV-1. First, estimation of primary HIV-1 capture by p24 measurements shows a very poor correlation with an estimation based on infectivity measurements. Second, virion capture appears to require relatively low Ab affinity for the virion, as shown by the ability of a monoclonal Ab to capture a wild-type and a neutralization escape variant virus equally well. Nevertheless, in a more interpretable competition format, it is shown that nonneutralizing anti-CD4 binding site (CD4bs) Abs compete with a neutralizing anti-CD4bs Ab (b12) for virus capture, suggesting that the nonneutralizing anti-CD4bs Abs are able to bind to the envelope species that is involved in virion capture in these experiments. However, the nonneutralizing anti-CD4bs Abs do not inhibit neutralization by b12 even at considerable excess. This suggests that the nonneutralizing Abs are unable to bind effectively to the envelope species required for virus infectivity. The results were obtained for three different primary virus envelopes. The explanation that we favor is that infectious HIV-1 primary virions can express two forms of gp120, an accessible nonfunctional form and a functional form with limited access. Binding to the nonfunctional form, which needs only to be present at relatively low density on the virion, permits capture but does not lead to neutralization. The expression of a nonfunctional but accessible form of gp120 on virions may contribute to the general failure of HIV-1 infection to elicit cross-neutralizing Abs and may represent a significant problem for vaccines based on viruses or virus-like particles.