Paul W. Park
Caterpillar Inc.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul W. Park.
SAE 2005 World Congress & Exhibition | 2005
John F. Thomas; Samuel A. Lewis; Bruce G. Bunting; John M. E. Storey; Ron L. Graves; Paul W. Park
Previously reported work with a full-scale ethanol-SCR system featuring a Ag-Al2O3 catalyst demonstrated that this particular system has potential to reduce NOx emissions 80-90% for engine operating conditions that allow catalyst temperatures above 340°C. A concept explored was utilization of a fuel-borne reductant, in this case ethanol “stripped” from an ethanol-diesel microemulsion fuel. Increased tailpipe-out emissions of hydrocarbons, acetaldehyde and ammonia were measured, but very little N2O was detected. In the current increment of work, a number of light alcohols and other hydrocarbons were used in experiments to map their performance with the same Ag-Al2O3 catalyst. These exploratory tests are aimed at identification of compounds or organic functional groups that could be candidates for fuel-borne reductants in a compression ignition fuel, or could be produced by some workable method of fuel reforming. A second important goal was to improve understanding of the possible reaction mechanisms and other phenomena that influence performance of this SCR system. Test results revealed that diesel engine exhaust NOx emissions can be reduced by more than 80%, utilizing ethanol as the reductant for a space velocity near 50,000/h and catalyst temperatures between 330 and 490 o C. Similar results
SAE transactions | 2003
Michael D. Kass; John F. Thomas; Samuel A. Lewis; John M. E. Storey; Norberto Domingo; Ron L. Graves; Alexander G. Panov; Paul W. Park
NOx emissions from a heavy-duty diesel engine were reduced by more than 90% and 80% utilizing a full-scale ethanol-SCR system for space velocities of 21000/h and 57000/h respectively. These results were achieved for catalyst temperatures between 360 and 400°C and for C1:NOx ratios of 4-6. The SCR process appears to rapidly convert ethanol to acetaldehyde, which subsequently slipped past the catalyst at appreciable levels at a space velocity of 57000/h. Ammonia and N 2 O were produced during conversion; the concentrations of each were higher for the low space velocity condition. However, the concentration of N 2 O did not exceed 10 ppm. In contrast to other catalyst technologies, NOx reduction appeared to be enhanced by initial catalyst aging, with the presumed mechanism being sulfate accumulation within the catalyst. A concept for utilizing ethanol (distilled from an E-diesel fuel) as the SCR reductant was demonstrated.
ASME 2012 Internal Combustion Engine Division Fall Technical Conference | 2012
Paul W. Park; Markus Downey; David Youngren; Claus Bruestle
For the first time in the locomotive industry, an advanced exhaust aftertreatment system for a locomotive application was successfully demonstrated to reduce nitrogen oxides from 6.46 g/kW·hr to 1.21g/kWhr to meet the needs of local NOx reduction requirements for non-attainment areas.Five 2,240 kW (3,005 horsepower) PR30C line-haul repowered Progress Rail locomotives were equipped with diesel oxidation catalyst and selective catalytic reduction technologies to accumulate more than 27,000 hours in total in revenue service.Full emissions performance including carbon monoxide, hydrocarbons, nitrogen oxides and particulate matter was conducted at Southwest Research Institute on a regular basis to measure the change of emissions performance for two selected locomotives.The emissions performance of the aftertreatment system did not show any degradation during 3,000 hours operation. After 3,000 hours operation, 0.13 g/kW·hr carbon monoxide (89–91% reduction), 0.027 g/ kW·hr hydrocarbons (91% reduction), 1.08–1.21 g/ kW·hr nitrogen oxides (81–83% reduction) and 0.05–0.08 g/ kW·hr particulate matter (38–58% reduction) were measured on the line-haul cycle. The baseline emissions levels of the engine are within Tier 2 EPA locomotive limits. The newly developed close loop control software successfully controlled targeted nitrogen oxides reduction with minimum ammonia slip during the locomotive emission cycle tests.Copyright
Archive | 2005
Mark J. Andrews; Raj Tandon; Eric Ott; Abi Akar Hind; Mike Long; Robert P. Jensen; Leonard Wheat; Dave Cusac; Hua-Tay Lin; Andrew A. Wereszczak; Mattison K. Ferber; Sun Kun Lee; Hyung K. Yoon; James Moreti; Paul W. Park; Jill Rockwood; Carrie L. Shiloh Boyer; Christie S. Ragle; Marilou Balmer-Millar; Chris L. Aardahl; Craig F. Habeger; Ken Rappe; Diana Tran; Kent A. Koshkarian; Michael J. Readey
New materials and corresponding manufacturing processes are likely candidates for diesel engine components as society and customers demand lower emission engines without sacrificing power and fuel efficiency. Strategies for improving thermal efficiency directly compete with methodologies for reducing emissions, and so the technical challenge becomes an optimization of controlling parameters to achieve both goals. Approaches being considered to increase overall thermal efficiency are to insulate certain diesel engine components in the combustion chamber, thereby increasing the brake mean effective pressure ratings (BMEP). Achieving higher BMEP rating by insulating the combustion chamber, in turn, requires advances in material technologies for engine components such as pistons, port liners, valves, and cylinder heads. A series of characterization tests were performed to establish the material properties of ceramic powder. Mechanical chacterizations were also obtained from the selected materials as a function of temperature utilizing ASTM standards: fast fracture strength, fatique resistance, corrosion resistance, thermal shock, and fracture toughness. All ceramic materials examined showed excellent wear properties and resistance to the corrosive diesel engine environments. The study concluded that the ceramics examined did not meet all of the cylinder head insert structural design requirements. Therefore we do not recommend at this time their use for this application. The potential for increased stresses and temperatures in the hot section of the diesel engine combined with the highly corrosive combustion products and residues has driven the need for expanded materials capability for hot section engine components. Corrosion and strength requirements necessitate the examination of more advanced high temperture alloys. Alloy developments and the understanding of processing, structure, and properties of supperalloy materials have been driven, in large part, by the gas turbine community over the last fifty years. Characterization of these high temperature materials has, consequently, concentrated heavily upon application conditions similiar to to that encountered in the turbine engine environment. Significantly less work has been performed on hot corrosion degradation of these materials in a diesel engine environment. This report examines both the current high temperature alloy capability and examines the capability of advanced nickle-based alloys and methods to improve production costs. Microstructures, mechanical properties, and the oxidation/corrosion behavior of commercially available silicon nitride ceramics were investigated for diesel engine valve train applications. Contact, sliding, and scratch damage mechanisms of commercially available silicon nitride ceramics were investigated as a function of microstructure. The silicon nitrides with a course microstructure showed a higher material removal rate that agrees with a higher wear volume in the sliding contact tests. The overall objective of this program is to develop catalyst materials systems for an advanced Lean-NOx aftertreatment system that will provide high NOx reduction with minimum engine fuel efficiency penalty. With Government regulations on diesel engine NOx emissions increasingly becoming more restrictive, engine manufacturers are finding it difficult to meet the regulations solely with engine design strategies (i.e. improved combustion, retarded timing, exhaust gas recirculation, etc.). Aftertreatment is the logical technical approach that will be necessary to achieve the required emission levels while at the same time minimally impacting the engine design and its associated reliability and durability concerns.
SAE transactions | 2003
Christopher L. Aardahl; Kenneth G. Rappe; Paul W. Park; Christie S. Ragle; Carrie L. Boyer; Steve Faulkner
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of g-alumina, In/g-alumina, and Ag/g-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 ? 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 ? 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Archive | 2001
Paul W. Park
Archive | 2001
Paul W. Park
Journal of Catalysis | 2002
Paul W. Park; Christie S. Ragle; Carrie L. Shiloh Boyer; M. Lou Balmer; Mark H. Engelhard; David E. McCready
Archive | 2010
Craig P. Hittle; Stephan D. Roozenboom; Tetsu O. Velasquez; Paul W. Park; Shashank Mupparapu; Rick E. Jeffs; Michael P. Boahene; Yung T. Bui
Catalysis Today | 2004
Kenneth G. Rappe; John Hoard; Christopher L. Aardahl; Paul W. Park; Charles H. F. Peden; Diana N. Tran